Locally-Connected Interrelated Network:
A Forward Propagation Primitive

Nicholas Collins! and Hanna Kurniawati?

! School of Information Technology and Electrical Engineering
University of Queensland, Brisbane, QLD, Australia
nicholas.collins2@ug.net.au,

2 Research School of Computer Science
Australian National University, Canberra, ACT, Australia
hanna.kurniawati@anu.edu.au

Abstract. End-to-end learning for planning is a promising approach for finding
good robot strategies in situations where the state transition, observation, and re-
ward functions are initially unknown. Many neural network architectures for this
approach have shown positive results. Across these networks, seemingly small
components have been used repeatedly in different architectures, which means
improving the efficiency of these components has great potential to improve
the overall performance of the network. This paper aims to improve one such
component: The forward propagation module. In particular, we propose Locally-
Connected Interrelated Network (LCI-Net) —a novel type of locally connected
layer with unshared but interrelated weights— to improve the efficiency of in-
formation propagation and learning stochastic transition models for planning.
LCI-Net is a small differentiable neural network module that can be plugged
into various existing architectures. For evaluation purposes, we apply LCI-Net
to QMDP-Net; QMDP-Net is a neural network for solving POMDP problems
whose transition, observation, and reward functions are learned. Simulation tests
on benchmark problems involving 2D and 3D navigation and grasping indicate
promising results: Changing only the forward propagation module alone with
LCI-Net improves QMDP-Net generalization capability by a factor of up to 10.

1 Introduction

Stochastic planning requires stochastic models of the state transition, observations, and
an objective function. However, such models are not always available, and attaining
them can be difficult, especially when the dynamics of both the robot and the environ-
ment must be accounted for. To overcome this difficulty, end-to-end deep learning based
approaches for combined planning and learning have been proposed and have shown
promising results. Many architectures have been proposed[2/319/12116117121122]]. These
different architectures often share common components and some of these components
even appear repeatedly within a single network. Such components are akin to “primi-
tives” in planning, and therefore, we hypothesise that improving the efficiency of such
components could substantially improve the capability of neural-network based com-
bined planning and learning. This paper focuses on improving the efficiency of one
such component: the Forward propagation module — that is, the neural network com-
ponent that propagates information on the basis of learned stochastic models of the state
transition function.

2 Collins and Kurniawati

A straightforward implementation of the forward propagation module often requires
many parameters to be learned. Therefore, to reduce training time and data requirement,
existing architectures simplify the models being learned. One commonly used approach
is to transform states to abstract states and learn the transition models with respect to
these abstract states, rather than states (e.g., [2U16/22]). This is generally done via an
auto-encoder: An encoder simplifies the current state into an abstract state, predicts the
next abstract state via a fully connected layer, and then decodes the subsequent abstract
state back into the original state. Transition from one abstract state to the next indeed
requires a much smaller number of parameters to be learned. However, one needs to
also learn the parameters for the auto-encoder. Moreover, the auto-encoder needs to be
deep enough to generate a sufficiently small feature space, which generally increases
the number of parameters to be learned.

Other architectures learn a state transition function with respect to the entire state
space, but reduce the parameters to be learned by exploiting the fact that state tran-
sition are generally local, and by assuming that they depend on actions, rather than
state-action pairs (e.g., [319U12I17021]]). This is done via weight sharing in a convolution
network, where the transition function for each action is represented as a kernel, whose
size is much smaller than the size of the state space. This architecture substantially re-
duces the number of parameters to be learned but, is more constrained in its function
representation.

To take the best of both worlds, in this paper, we propose a forward propagation
module, called Locally-Connected Interrelated Network (LCI-Net). Key to LCI-Net is
a novel locally-connected network layer with indirectly interrelated weights. It enables
LCI-Net to exploit the locality property present in most transition functions and applies
the learned transition to the original states, rather than abstract states, while learning
a transition function that depends on pairs of abstract states and actions. LCI-Net is
differentiable and is designed for multi-task learning, in the sense that LCI-Net learns a
stochastic model of system’s dynamics for a multitude of scenarios at once.

LCI-Net is a simple module that can be plugged into various neural-network ar-
chitectures that require information propagation governed by learned transition func-
tions, such as model-based reinforcement learning and Bayesian filtering. In this pa-
per, we evaluate LCI-Net by applying it to the QMDP-Net architecture[9] —a neural
network architecture that finds policies for Partially Observable Markov Decision Pro-
cesses (POMDPs) problems whose transition, observation, and reward functions are
initially unknown and are learned from data in an end-to-end fashion. In particular, we
use LCI-Net to replace QMDP-Net’s Forward Propagation module, both in its plan-
ning and Bayesian filter modules. Since QMDP-Net’s Bayesian filter is the End-to-End
learnable Histogram Filter (E2E-HF)[7]], our evaluation applies LCI-Net to E2E-HF
architecture too. We evaluate the performance of LCI-Net on various 2D and 3D nav-
igation and grasping benchmarks, and evaluate the results of learning on problems of
the same class but with much larger state and observation spaces. Simulation results
indicate that replacing only the forward propagation component of QMDP-Net with
LCI-Net improves its generalization capability by a factor of up to 10.

LCI-Net 3

2 Background and Related Work

2.1 Background
Although LCI-Net can be applied to various neural-network architectures that require a
forward propagation module, to make the explanation concrete, in this paper, we focus
on applying LCI-Net to compute a good POMDP policy when the POMDP model is
not known a priori.

Formally, a POMDP[8l20] is described by an 8-tuple (S, A, O, T, Z, R,), where
S is the set of states, A is the set of actions, and O is the set of observations. At each
step, the agent is in some hidden state s € S, takes an action a € A, and moves from s
to another state s’ € S according to a conditional probability distribution T'(s, a, s’) =
P(s'|s, a), called the transition probability. The current state s’ is then partially revealed
via an observation o drawn from a conditional probability distribution Z(s’,a,0) =
P(o|s’, a) that represents uncertainty in sensing. After each step, the agent receives a
reward R(s,a), if it takes action a from state s. Due to uncertainty in both the effects
of actions and observations perceived, a POMDP agent never knows its exact state, and
represents this uncertainty as distributions over states, called beliefs, and denoted as
b € B. The solution to a POMDP problem is then a mapping from beliefs to actions,
called policy 7, that maximises the expected total reward, i.e.,

V*(b) = max Z R(s,a) b(s) +~ Z P(o|b,a) V*(7(b,a,o0)) (1)

cA
“ s€S 0cO

where v € (0,1) is a discount factor to ensure the optimisation is well defined, and
7(b,a,0) is the belief after action a € A is applied to b and observation 0o € O is
perceived, computed as:

7(b,a,0)(s') =nZ(s',a,0) ZT(S, a,s")b(s) ; nisanormalisation factor (2)
ses

When the transition, observation, and/or reward functions are a priori unknown,
finding a POMDP policy can be formulated as reinforcement learning or imitation learn-
ing problems. LCI-Net can be applied to replace the forward propagation modules of
methods in both learning techniques. In this paper, we apply LCI-Net to imitation learn-
ing.

2.2 Related Work

Recently, there has been a growing body of works that apply deep learning for model
free learning to solve large scale POMDPs when the model is not fully known. For
instance, [5] implemented a variation of DQN [[15] which replaces the final fully con-
nected layer with a recurrent LSTM layer to solve partially observable variants of Atari
games. The work in [14] applied convolutional neural networks with multiple recurrent
layers for the task of navigating within a partially observable maze environment. The
learned policy is able to generalise to different goal positions within the learned maze,
but not to previously unseen maze environments.

More recently, success has been achieved with methods that embed specific com-
putational structures representing a model and algorithm within a neural network and
training the network end-to-end, a hybrid approach which has the potential to combine

4 Collins and Kurniawati

the benefits of both model-based and model-free methods. For instance, [21] developed
a differentiable approximation of value iteration embedded within a convolutional neu-
ral network to solve fully observable Markov Decision Process (MDP) problems in dis-
crete space, while [18]] implemented a network with specific embedded computational
structures to address the problem of path integral optimal control with continuous state
and action spaces. These works focus only on cases where the state is fully observable.

By combining the ideas in the above work with recent work on embedding Bayesian
filters in deep neural networks[4/7U10], one can develop neural network architectures
that combine model-free learning and model-based planning for POMDPs. For in-
stance, [[19] implemented a network which implements an approximate POMDP algo-
rithm based on Q7 pp [[13] by combining an embedded value iteration module with an
embedded Bayesian filter. Modules are trained separately, with a focus on learning tran-
sition and reward models over directly learning a policy. More recently, [9] developed
QMDP-Net, which implements a QQ);pp approximate POMDP algorithm to predict
approximately optimal policies for tasks in a parameterised domain of environments.
Policies are learned end-to-end, focusing on learning an “incorrect but useful” model
which learns to optimise policy performance over model accuracy.

Recently, deep learning has been viewed as a new programming paradigm, called
differentiable programming, where algorithms and data are implemented as differen-
tiable neural network blocks[1/11]. Neural network “primitives”, such as a forward
propagation module, can be viewed as one of the programming blocks, albeit one fo-
cused for stochastic planning. In this paper, we focus on improving the efficiency of
this particular module.

3 LCI-Net

LCI-Net is a forward propagation module that can be embedded into various neural net-
work architectures that combine planning and model learning, such as [213191121712 1122]].
Key to LCI-Net are locally-connected layers with indirectly interrelated weights. This
new type of layer enables efficient information propagation governed by transition mod-
els that are more expressive than possible with standard spatial convolution layers,
which in turn improves the overall performance and generalisation capability.

LCI-Net is suitable for multi-task learning in partially observable stochastic envi-
ronments. To show this capability of LCI-Net, we focus on the problem of learning a
near optimal policy, end-to-end, for acting in a parameterized set of partially observable
scenarios: We = {W(0)|0 € O}, where O is the set of all possible parameter values.
Each parameter 6 describes properties of the scenarios such as obstacle geometry and
materials, position of static and dynamic obstacles, goal location, and initial belief dis-
tribution for a given task and environment. Moreover, the problems of deciding how to
act in the various scenarios in Wg are defined as POMDPs with a common state space
S, action space A and observation space O but without a priori known transition, action,
and observation functions.

We assume the neural network for solving the above problem embeds an internal
model M (0) = (S, A,O, fr(.10), fz(.19), fr(.|0)), where S, A and O are the state
space, actions space, and observation space respectively, which are manually speci-
fied, and constant across the set of tasks in the task domain. The notations fr(.|0),

LCI-Net 5

fz(.|0), and fr(.|0) are the transition function, observation function, and reward func-
tion, respectively, and are represented by sub-networks which are trained end-to-end to
maximise policy performance. Note that M () does not necessarily represent the “true”
underlying model. End-to-end learning enables the learned model to be “incorrect but
useful”, differing from the “true” model but producing near optimal policies when com-
bined with the embedded solver in situations where applying the solver directly to the
“true” model would not yield an optimum policy due to the solver limitations, such as
when Q) s pp heuristic is used to approximate POMDP solutions.

LCI-Net is a neural network module that learns and propagates information via the
transition function f7(.|@). It consists of two inter-related structures. The first structure
represents fr(.|0). Key in this structure is a representation suitable for robust learning,
in the sense that the results of learning transfer across different tasks in the task domain
and generalise beyond the training set. The second structure is designed to efficiently
propagate information, such as state-action values and beliefs, through space over a
single time step, in accordance to the transition function. Key to this is the new locally-
connected layer with indirectly interrelated weights that allows the two structures to
merge seamlessly. The following subsections describe these two structures in details.

3.1 Representing Transition Function

The transition function is parameterized by the current state s € .S, the action a € A,
and the subsequent state s’ € S. Therefore, a straightforward modelling of such a func-
tion requires |S|?| A| parameters to be learned, resulting in very large transition models
for problems beyond trivial size. To reduce this learning complexity without sacrificing
robustness, known information about the problem’s structure should be encoded in the
neural network representation of the transition function.

To that end, spatial convolution layers have often been used. This is not surprising
because convolution layers encode the constraints of locality and positional invariance:
The value of an output is influenced only by inputs within some local neighbourhood
of the position of the output, and is independent of the position of the output. This lo-
cality assumption is suitable for transition functions. In general, only local environment
influences the effect of actions within a single time-step. For instance, only surround-
ing obstacles (within the maximum distance an agent can traverse) matter to determine
whether collision will occur within a single time-step. However, the position invariance
assumption is rather problematic. This invariance assumes that the local information in
all parts of the state space are the same, which in general is false.

Such an invariant means the learned transition model cannot represent important
characteristics, such as the dynamic differences between a mobile robot moving in free
space and moving near an obstacle, and between a robotic grasper applying force inside
and outside the friction cone of a surface. In end-to-end learning, the reduced expres-
siveness of the learned transition function can be compensated for by the learned reward
function. However, it comes at a cost, as we will see in Section @ LCI-Net proposes
an alternative to spatial convolution layers that aims to relax the restriction on positional
invariance while encoding an additional form of locality. Fig. [T]illustrates this structure.

Specifically, LCI-Net formulates a representation of the transition model in the form
T(s,a,ds), where s € S, a € A, and ds is the relative change to s after action a

6 Collins and Kurniawati

is performed. The transition probabilities for any state s depend only on h(s), the lo-
cal features of s, and T'(s1,a,ds) = T(s2,a,ds) when h(s;) = h(sz). Under this
formulation, the transition probability is learned for each combination of state local
features, action, and relative change in state. The support of 7" in each dimension of S
is constrained to lie within r distance, where r is the maximum distance the agent can
move in a single dimension of .S within one time-step. Similar to existing approaches,
a spatial convolution layer network, with kernel width 2r + 1, is used to learn f7(.|6).
However, unlike existing approaches in which the learned independent kernel weights
represent transition probabilities, LCI-Net learns a set of kernel weights to predict the
transition probabilities for each state—action pair, based on local environment features.
These learned weights are shared, enabling information learned about the transition
probabilities for one state to generalise to other states. Moreover, the number of learned
weights can be made independent of the size of the state space, allowing a transition
model trained on a set of small environments to be applied in larger environments for
evaluation, thereby improving scalability and generalisation capability.

End-to-end learning depends on differentiable approximations of planning and state
estimation algorithms to allow error signals to be propagated backwards throughout all
stages of the network for training. When the transition model component is formulated
as T'(a,0s), as in prior works, the effect of transition can be represented by standard
spatial convolution, where the learned transition probabilities form the convolution ker-
nel. This is not possible with the more expressive formulation T'(s, a, ds), as different
weights must be applied in different parts of the state space image. Applying this tran-
sition model within an embedded algorithm requires a new type of differentiable struc-
ture. To address this requirement, we introduce the concept of locally-connected layers
with indirectly interrelated weights for information propagation.

3.2 Propagating Information

To enable information such as state-action values or beliefs to be propagated based
on a set of transition probabilities in the form T'(s, a, §s), LCI-Net constructs locally-
connected layers with indirectly interrelated weights (illustrated in Fig. [I).

Let X;(s) be some function defined over the state space at time step ¢ and state s €
S. In this work, X, (s) may represent a set of state values V;(s) or a belief distribution
bt(s). The transition operator takes X;(s) as input. This input is duplicated | A| times
and stacked along a new axis to create channels corresponding to each possible action.

For each channel (aka. each action in A), one shift operation is applied to the image
for each direction ds € D, where D is a set of directions (relative changes in position).
This set may be selected either as the complete set of all possible relative changes in po-
sition within some fixed distance, or be some restricted subset, e.g. North, South, East
and West in 2D space. The type of set of shifts is a hyper-parameter for the network.
The resulting shifted images are stacked along an additional new axis. Let this tensor
be called X (s, a, &s). In the case where |S| has 2 dimensions and size n x m, the shape
of X is (n,m,|A|,|D|). X(s,a,ds) is multiplied by the transition model T'(s, a, §s)
predicted by the transition model component network fr(.|6), which applies the effect
of the transition probabilities, weighting the value at each shift direction by the proba-
bility of a transition in that direction occurring. A sum is then performed over the |D|

LCI-Net 7

axis of the tensor to produce an expectation of the future value after transition dynamics
are applied.

This network structure can be viewed as analogous to a locally connected network
layer (in which locality is encoded, but weights are not shared), where the weights
applied in each weighted sum are not independent trainable variables, but are instead
provided by an external tensor, 7'(s, a, ds). This means that while the weights are not
directly shared, they remain interrelated in that they are produced by f7(.|6), and so are
each related to their local environment by the same weights (the kernel of f7(.|0)).

This new type of locally-connected layer with indirectly interrelated weights struc-
ture provides a compromise which combines the superior generalisation capability of
spatial convolution layers with the greater expressiveness of locally connected layers,
while encoding algorithmic priors that are well suited to the problems of planning and
state estimation. In the next subsection, we will elaborate the efficiency of LCI-Net in
terms of the number of learned parameters.

[[[]]) X(s, &s)
X — T —r—1—1
iz —= =
i~ Haannn
ﬂ ::__—__’ LaCk X'(s)
L_—-__-»
L= Multiply and i
p— sum over
—~ - shift axis
Map Image frnetwork . T
| | : :
— | |

\E\ ! - :
é = T(s, 63)

Transition
Model
Representation

Fig. 1. Transition Operator based on Locally Connected Layer with Indirectly Interrelated
Weights, shown with 4 shift operations, simplified to show propagation for only one action rather
than all actions in the action space.

3.3 Complexity Analysis

To enable scaling to real world applications, it is essential that efficient time and space
complexity are maintained. Compared to prior methods that use spatial convolution
to learn the transition probabilities, LCI-Net introduces only a small increase in the
number of trainable variables and number of operations required, and has the same
asymptotic complexity in terms of state and action space size.

Let r be the maximum range within which the agent can move in one time step.
Equivalently, r is the maximum distance within which an environment feature such
as an obstacle can influence the movement of the agent. This range corresponds to a

8 Collins and Kurniawati

convolution kernel width of £ = 2r 4 1. This kernel width applies to both the transition
dynamics convolution in prior methods, and the f7(.|#) network in LCI-Net.

In LCI-Net, the number of channels is equal to the product of the size of the action
space |A| and the number of shift directions, |D|, giving a total number of learnable
parameters as k%| A||D|. As a comparison, the number of channels in prior methods is
equal to the number of available actions, which gives a total of k?|A| parameters to
be learned. Furthermore, no additional learnable parameters are introduced outside of
the f7(.|#) component network. When D is selected to be the set of all possible shifts
within the maximum range r, and the number of dimensions of S is fixed, the size of
D is independent of the size of the number of states in .S. This gives linear complexity
in terms of the number of actions, and constant complexity in terms of the number of
states, equal to that of prior methods.

In terms of number of operations required, LCI-Net requires one multiplication and
one addition for each combination of state, action, shift direction and kernel position.
Additionally, a shift operation is required for each state. This gives a computational
complexity proportional to (k?|A||D| + 1)|S|, where D can be considered constant
when the number of spatial dimensions and maximum movement range are below a
fixed maximum. As a comparison, prior methods require one multiplication and one
addition for each combination of state, action and kernel position, resulting in a total
number of operations proportional to k? x |A| x |S|. This comparison shows that LCI-
Net and prior methods have identical computational time complexity to prior methods
in terms of state and action space size.

In general, the complexity of | D| is linear in the transition range r and the number
of dimensions, dim(S). However, scalability can be further improved by restricting D
to a subset of the set of all possible shifts. Our experimental results (Section [5.2)) on
a diverse set of domains indicate that certain restrictions do not detrimentally affect
policy performance or learning convergence speed.

4 Applying LCI-Net

In this work, we use LCI-Net to replace the forward propagation module of QMDP-Net.

QMDP-Net’s overall architecture consists of two components: Planning and Be-
lief Update. The planning component approximates eq. (I)) using QMDP heuristic. The
Belief Update applies E2E-HF[7] to compute eq. (2). Both value iteration and belief
update contains forward propagation operations. LCI-Net replaces the forward propa-
gation module in both of those components of QMDP-Net.

4.1 Application to the Planning Component

QMDP approximates eq. (I)) by assuming that the agent’s state becomes fully observ-
able after the first step. More precisely, it computes V*(b) = max,eca Y g b(s)[R(s,a)+
¥ ses T(s,a,8)V*(s")], where V*(s) is approximated via value iteration, i.e., via
iterative computation of

Vit1(s) = gleazq R(s,a) + ’ySIgST(s, a,s"\Vi(s') 3)

until ¢ > T for a constant time limit 7".

LCI-Net 9

QMDP-Net adopted the value iteration implementation of VIN[21]], where value
iteration is implemented as a recurrent neural network. This network consists of a re-
peating block structure, in which each block represents a single step of value iteration
and blocks can be stacked to arbitrary depth to produce any desired planning horizon.
Each value iteration block contains a forward propagation module that computes the
intermediate value V/,(s,a) = > . 5T (s,a,5")Vi(s') of eq. . We replace this
forward propagation module in each value iteration block with.

Each value iteration block
takes as input a value image . et

Vi(s|6), and produces as output |2 m‘_' “ _FW.TLWJ—OAQH
e — Propagation ‘

updated values based on one ad-

ditional planning step, Vii1(8|6), i — - .
with the input to the first block, @% K52 ‘
Vo(s]0), taken from the predic- comase — i
tion of the immediate reward as-

sociated with each s € S pro- .

vided by fr(.|0). In this applica- Flg. 2. Value Iteratlop network block. LCI-Net becomes
tion, LCI-Net takes V;(s|§) and its forward propagation module.

produces V/ ,(s,a). The reward

image R(s,a) is then summed with V//,;(s,a) to incorporate the immediate reward
received at time step t + 1, yielding Q¢41(s, a). Vz11(s|0) is then produced by select-
ing the action channel of Q41 with the greatest expected return. Fig. [2]illustrates this
block.

4.2 Application to the Belief Update Component
A POMDP agent maintains a be-
lief, which is updated at each

LCI-Net index a
time step, as governed by eq. (). b | bsa) E—Q—- b0

Forward

In QMDP-Net, belief update uses Fropsgaton I
a neural-network based histogram a g)—» bt

filter, called E2E-HF. The for- """ e P
ward propagation module is used QA?— 2
in this filter to compute in the
intermediate value bt +1(3 a) =
Yees T(s,a,8)b(s) in eq. (@)
We replace this module in the be- Fig. 3. Belief Update network block. LCI-Net becomes
lief update block with LCI-Net. its forward propagation module.

This belief update block takes
a prior belief by, an action a; and an observation o, as input, and produces the updated
belief b.11 as output, which is stored as the prior belief for the next action selection.
In this application, LCI-Net is applied to the prior belief image to produce b} (s, a),
the belief propagated forward by one time step after action a € A is performed. This
tensor is indexed based on the performed action a;, with the channel corresponding to
a; retained, and all other channels discarded, giving b’(s), the updated prior belief.

In parallel, the observation model Z(s|o) produced by the model component net-
work fz(.]0) is indexed based on the perceived observation o;, with the channel corre-

Ot

10 Collins and Kurniawati

sponding to o, selected to give Z(s), the likelihood of each state based on the perceived
observation. b(s) and Z(s) are then multiplied and normalised to give the posterior
belief by 1 (s). Fig. B]illustrates this Belief Update component.

S Experiments

5.1 Experimental Setup

To evaluate the potential of LCI-Net in increasing the performance of combined learn-
ing and planning, we replace the forward propagation module of state-of-the-art QMDP-
Net with LCI-Net, and compared this modified QMDP-Net (which we denote as LCI-
Net for short) with the original QMDP-Net on a variety of partially observable stochas-
tic environments. Results of LCI-Net are based on an implementation developed on top
of the software released by the QMDP-Net authors, while QMDP-Net results are based
on their released code.

Both networks are trained via imitation learning using the same set of expert tra-
jectories, with the expert trajectories generated by applying the Qaspp algorithm to
manually constructed ground-truth POMDP models. Only trajectories where the expert
was successful were included in the training set. The networks interact only with the
expert trajectories and not with the ground-truth model. All hyper-parameters for both
networks are set to match those used in the QMDP-Net experiments[9]].

Training was conducted using GPU on an Nvidia GeForce RTX2070 GPU with
8GB of dedicated memory. The GPU is installed in a machine equipped with an Intel
Xeon Silver 4110 CPU (8 cores, 16 threads at 2.10GHz) and 128GB of system RAM.
We tested the networks on four domain types:

2D Dynamic Maze A navigation problem in
a maze environment with structure that mu-
tates during run-time in a way which quali-
tatively affects the optimum policy, designed
to measure the robustness of a policy to dy-
namic environments. The robot must localise
itself and navigate to the goal, while ac-
counting for the possibility of environmental Fig. 4. Example of a 9x 9 dynamic maze en-
changes. vironment in both possible gate states. Light

The robot is given a map of obstacle po- &rey represents an open gate, dark grey a
sitions, a specified goal location, and initial ~closed gate. The agent must navigate from
belief distribution. No other environment in- the red circle to_ the blu'e circle. The red line
formation is given, and the POMDP model is denotes the optimal trajectory.
not known a priori. At each time step, the robot selects a direction to move in. The
outcomes of actions are probabilistic. Observations are received based on whether an
obstacle is present in the adjacent cell in each of the “north”, “south”, “east” and “west”
directions, with an independent fixed chance to receive an incorrect sensor reading for
each direction.

To generate the dynamic maze layout, a maze is initially constructed using random-
ized Prim’s algorithm. The maze is divided into 2 partitions, with 2 cells from the border
selected to be gates. At each time step, exactly one gate is open and the gates will swap

LCI-Net 11

from open to closed and vice versa with certain probability. During run time, the envi-
ronment map provided to the agent is updated when a gate swap occurs. The start and
goal position are selected such that a gate swap will cause the optimum solution to be
qualitatively changed. Fig. @ illustrates an example. Two variations of this scenario are
evaluated:

V1: The network is trained using only expert trajectories from the static maze naviga-
tion task. The environment image provided in 6 shows only the positions of current free
spaces and current obstacles, without special marking for open or closed gates.

V2: The network is trained using trajectories based on an expert which plans on a dy-
namic ground truth POMDP model, allowing the expert to decide whether to wait for
a nearby closed gate to open. The environment image received by the agent denotes
the position of the gate which is currently closed. This may allow the agent to learn to
intelligently decide whether to move or wait for the currently open gate to change. The
open gate is not represented in the image. The networks are trained on a set of 9x9
dynamic maze environments containing 2000 environments with 5 trajectories per en-
vironment, and evaluated on both 9x9 and 29x29 dynamic mazes. Evaluation results
are based on 1250 trials composed of 50 environments, 5 trajectories per environment
and 5 repetitions per trajectory.

2D Navigation with Large Scale Realistic Environments A robot navigation prob-
lem in a general 2D grid setting with noisy state transitions and limited observations.
The robot receives a map of obstacle positions, a specified goal location, and initial be-
lief distribution. The POMDP model is not known a priori. At each time step, the robot
selects a direction to move in, and receives a noisy observation indicating whether an
obstacle is present in each direction. The networks are trained on artificial environ-
ments, with obstacle positions sampled at uniform random. Two different sizes of train-
ing environment are employed — 10x 10 and 20x20. The 10 x 10 set contains 2000
environments with 5 trajectories per environment, while the 20 x 20 set contains 6000
environments with 5 trajectories per environment.

After training on the artificial environment set, evaluation is performed on environ-
ments modelled on the LIDAR maps from the Robotics Data Set Repository [6]. The
robot receives an environment floor plan, a specified goal position and a randomly ini-
tialised belief distribution. No other information or model is provided. Three different
maps are evaluated in both deterministic and stochastic form, each with dimensions on
the order of 100x 100. For the deterministic case, evaluation results are based on 100
trials for each map. For the probabilistic case, results are based on 150 trials per map.

3D Navigation of Multi-rotor Drone A navigation problem in 3 dimensional space
with noisy state transitions and limited, unreliable observations, representing the task
of control of autonomous multi-rotor drones through spaces with dense obstacles with
limited sensing. The drone is given a 3D model of obstacle positions, a specified goal
location, and initial belief distribution, and does not know the POMDP model a priori.
The robot must localise itself and navigate to the goal.

The networks are trained on a set of artificial 7 x 7 x 7 3D environments comprising
of 6000 environments with 5 trajectories per environment, with evaluation performed
on both 7 x7x 7 and 14 x 14 x 14. Evaluation results are based on 1250 trials composed
of 50 environments, 5 trajectories and 5 repetitions.

12 Collins and Kurniawati

2D and 3D Grasping A robot gripper picks
up randomly generated obstacles placed on
a surface using a two-finger hand with ob-
servations received only via touch sensors
mounted on the hand’s fingertips. The agent
receives a 2D image or 3D model of the shape

object to t')e grasped an?l an additional image Fig. 5. Example of a 3D grasping task. Or-
or model indicating which parts of the object ange indicates the position of the grasping

can feasibly be grasped. The agent does not phang, and green and blue indicate an object
know its initial pose, and outcomes of tran- (o be grasped, where the blue areas are fea-
sitions and sensor readings are probabilistic. sible grasp points. The left image shows a
We evaluate the networks on simplified vari- possible initial pose for the grasping hand,
ants of this task in both 2 and 3 dimensions. while the right image shows the hand grasp-
Figure 5| shows an example 3D grasping sce- ing at feasible grasp point on the object.
nario.

The networks are trained on a fixed set of randomly generated objects placed in
random positions on a table surface, and evaluated on a new set of previously unseen
objects. In the 2D case, the training set comprises 80 objects, with 125 combinations
of object position and initial gripper pose. In the 3D case, the training set is composed
of 6000 object shapes, with 5 distinct positions for the obstacle and the gripper start-
ing pose. Evaluation results are based on 1250 trials composed of 50 environments, 5
trajectories and 5 repetitions.

5.2 Results and Discussion

Our results demonstrate that LCI-Net, despite representing only a relatively small change
in the network architecture of QMDP-Net, is able to deliver significant increases in per-
formance and efficiency.

Table 1. Performance of LCI-Net and QMDP-Net on 2D dynamic maze. LCI-Net represents our
network incorporating LCI-Net with all possible shift directions included, D indicates determin-
istic transitions and observations, while S represents stochastic transitions and observations. Traj
Len is the average length of all successful trajectories, and is only directly comparable between
cases where Success Rate is similar. Col Rate is the fraction of actions which resulted in collision
over all trajectories, regardless of whether successful.

Environment Network Type Success Rate Traj Len (95% CI) Col Rate (95% CI)
Dynmaze V1 S 9x9 QMDP-Net 0.887 237 (£ 1.1) 0.226 (£ 0.009)
(trained on 9x9 S) LCI-Net 0.942 202 (£ 0.8) 0.195 (£ 0.008)
Dynmaze V1 S 29x29 QMDP-Net 0.031 237 (£ 1.1) 0.226 (£ 0.009)
(trained on 9x9 S) LCI-Net 0.302 202 (£ 0.8) 0.195 (£ 0.008)
Dynmaze V2 S 9x9 QMDP-Net 0.808 241 (£ 1.2) 0.213 (£ 0.008)
(trained on 9x9 S) LCI-Net 0.978 18.7 (£ 0.8) 0.123 (£ 0.005)
Dynmaze V2 S 29x29 QMDP-Net 0.091 718 (£ 0.7) 0.412 (£ 0.009)
(trained on 9x9 S) LCI-Net 0590 597 (+ 24) 0.228 (+ 0.011)

Table [T] presents comparisons on the success rate, average number of steps, and
collision rate of executing the policies generated by LCI-Net and by QMDP-Net for
the dynamic maze environment tasks. The supplementary video shows a comparison of
these policies. Table[2] shows the performance of LCI-Net on the same task where D is
restricted to Non-Diagonal shift directions.

LCI-Net 13
Table 2. Performance of LCI-Net with D restricted to Non-Diagonal directions on 2D dynamic
maze tasks.

Environment Success Rate Traj Length (95%CI) Collision Rate (95% CI)
Dynmaze VI S 9x9 0.985 18.6 (+ 0.7) 0.157 (&£ 0.007)
Dynmaze V1 S 29x29 0.743 18.6 (£ 0.7) 0.157 (& 0.007)
Dynmaze V2 S 9x9 0.971 18.6 (= 0.8) 0.135 (= 0.006)
Dynmaze V2 S 29x29 0.604 60.7 (£ 2.3) 0.148 (£ 0.005)

A number of key conclusions can be drawn from these results. First, our network
incorporating LCI-Net is able to produce consistently higher success rates and lower
collision rates than QMDP-Net. In the cases where success rates are closest between the
networks, LCI-Net produces average trajectory lengths which are near or below those
produced by QMDP-net. This applies both when D includes all possible shifts and when
D is selected to contain Non-Diagonal shifts only, with the the Non-Diagonal variant
delivering comparable or better performance than the version which uses all possible
shift directions.

Secondly, the size of the disparity between the performance of the architectures
becomes dramatic when the learned models are generalised to larger environments.
In Dynamic Maze V1, the success rate of QMDP-Net drops by more than 95 percent
when environment size is increased to 29 x 29, while the ND variant of LCI-Net has
its success rate reduced by less than 25 percent. The V2 maze variant gives similar
results - the QMDP-Net success rate drops by almost 90 percent, while the ND version
of LCI-Net drops by less than 40 percent.

This indicates that the introduction of LCI-Net greatly improves the generalisation
capability of QMDP-Net, allowing effective policies to be found in large environments
while requiring only expert trajectories on small environments for training. This result
is likely enabled by the greater domain knowledge able to be encoded via the structure
of the LCI-Net forward propagation. This represents a significant step towards making
end-to-end learning for planning practical for real world applications.

Table 3. Performance of LCI-Net and QMDP-Net on 2D navigation benchmarks. Training is
performed on a set of small artificially generated environments, while evaluation is performed on
large environments based on LIDAR scans of buildings.

Environment Network Type Success Rate Traj Len (95% CI) Col Rate (95% CI)
Building 79 D QMDP-Net 0.120 60.2 (£ 185) 0.191 (& 0.067)
(trained on 10x10 D) LCI-Net 0.870 737 (= 80) 0.031 (& 0.026)
Building 79 S QMDP-Net 0.113 138.8 (+ 40.2) 0.349 (+ 0.044)
(trained on 10x10S) ~ LCI-Net 0.567 139.0 (£ 12.0) 0.068 (£ 0.016)
Building 79 S QMDP-Net 0.508 126.7 (£ 12.3) 0.177 (= 0.027)
(trained on 20x20 S) LCI-Net 0.664 1269 (£ 10.2) 0.050 (& 0.007)
Intel Labs D QMDP-Net 0.120 102.8 (+ 48.8) 0.059 (+ 0.045)
(trained on 10x10 D) LCI-Net 0.940 87.4 (£ 10.0) 0.016 (+ 0.018)
Intel Labs S QMDP-Net 0.073 81.5 (£ 47.5) 0.368 (= 0.043)
(trained on 10x10 S) LCI-Net 0.547 138.8 (+ 15.0) 0.067 (= 0.010)
Intel Labs S QMDP-Net 0.468 138.6 (£ 12.1) 0.177 (&£ 0.027)
(trained on 20x20 S) LCI-Net 0.664 1384 (£ 10.0) 0.065 (+ 0.012)
Hospital D QMDP-Net 0.050 59.0 (£ 63.4) 0.345 (+ 0.069)
(trained on 10x10D) LCI-Net 0.500 74.6 (£ 10.0) 0.060 (£ 0.039)
Hospital S QMDP-Net 0.093 104.5 (&£ 34.7) 0.337 (= 0.041)
(trained on 10x10 S) LCI-Net 0.433 1133 (£ 14.8) 0.128 (+ 0.025)
Hospital S QMDP-Net 0.440 1233 (£ 122) 0.113 (& 0.020)

(trained on 20x20 S) LCI-Net 0.552 107.1 (£ 8.8) 0.083 (£ 0.008)

14 Collins and Kurniawati

Table (3| shows a comparison of the performance of policies produced by LCI-Net
and by QMDP-Net for the 2D navigation tasks. The trends from the dynamic maze
tasks continue. LCI-Net consistently produces a higher overall level of policy perfor-
mance, with the distinction between the networks most pronounced when training is
performed on the smaller 10x 10 environments. The policy produced by QMDP-Net
from the 10x 10 returned a success rate of below 15% in each of the trialed environ-
ments, while the policy produced by LCI-Net achieves success rates above 50% for all
but one of the environments, and above 80% for two environments.

Table 4. Performance of LCI-Net and QMDP-Net on 3D navigation of multi-rotor drone.

Environment Network Type Success Rate Traj Len (95%CI) Col Rate (95% CI)
Grid 3D 7x7x7 S QMDP-Net 0.949 172 (£ 09) 0.069 (+ 0.005)
(trained on 7x7x7 S) LCI-Net (ND) 0.950 16.1 (£ 0.9) 0.066 (+ 0.005)
Grid 3D 14x14x14 S QMDP-Net 0.514 263 (+ 0.8) 0.086 (= 0.006)
(trained on 7x7x7S) LCI-Net (ND) 0.729 26.8 (£ 0.7) 0.063 (£ 0.004)

Table [shows results for the 3D multi-rotor drone navigation task. Both network
architectures are able to produce high rates of success and low rates of collision when
evaluated on environments of the same size as used in training. Increasing the scale and
complexity of the evaluation environment again shows an advantage in performance
produced by LCI-Net.

Table S. Performance of LCI-Net and QMDP-Net on grasping tasks.

Environment Network Type Success Rate Traj Len (95% CI) Col Rate (95% CI)
Grapser 2D 14x14 QMDP-Net 0.606 182 (£ 1.2) 0.118 (& 0.008)
(trained on 14x14) LCI-Net (ND) 0.700 19.0 (£ 1.1) 0.116 (& 0.008)
Grapser 3D 7x7x7 QMDP-Net 0.883 10.2 (£ 0.8) 0.163 (= 0.012)
(trained on 7x7x7) LCI-Net (ND) 0.922 10.7 (£ 0.8) 0.177 (£ 0.013)
Grapser 3D 14x14x14 QMDP-Net 0.298 277 (£ 20) 0.359 (= 0.014)
(trained on 7x7x7) LCI-Net (ND) 0319 299 (+ 2.0) 0.409 (£ 0.016)

Table [5] presents results for the object grasping tasks. Here, LCI-Net continues to
produce higher success rates. Both networks are able to produce effective policies for
3D grasping on environments with the same dimensions as the training set, though
generalising to larger environments is challenging for both architectures, with LCI-Net
giving a small advantage in success rate.

Table [6] provides a comparison of the time and memory required for training for
each environment between LCI-Net and QMDP-Net. The more expressive transition
operator incorporated in LCI-Net introduces only a small amount of extra complexity.
The additional time required per epoch of training is small in most cases, and is often
compensated for by a decrease in the number of epochs of training required to reach
convergence.

When only Non-Diagonal shifts are included in D, the complexity results are par-
ticularly promising. In some cases, LCI-Net with Non-diagonal shifts requires less time
per epoch of training than QMDP-Net while converging in fewer epochs, resulting in
a significant reduction in the total amount of time for training, while still producing
policies which perform at a higher level than QMDP-Net policies.

In most cases, the additional amount of memory consumed by LCI-Net is negligible
relative to total memory consumption. While scaling to larger environments results in

LCI-Net 15
Table 6. Comparison of time and resources required for training in each environment between
our network with LCI-Net and QMDP-Net. LCI-Net represents our network incorporating LCI-
Net with all possible shift directions included, LCI-Net (ND) represents our network with only
Non-Diagonal shift directions included. Time per epoch is in mm:ss format, while total train time
is in hh:mm:ss format. Memory usage refers to the amount of GPU memory consumed - this is
the only memory used for training.

. Network # Shift Time per Epochs to Total Train Memory
Environment y,e Directions epoch converge Time Usage (MiB)

QMDP-Net 3:08 612 31:57:36 2333

Grid 2D 20x20 LCI-Net 9 3:46 678 42:33:48 2609

LCI-Net (ND) 5 2:44 624 28:25:36 2333

QMDP-Net 0:20 997 5:32:20 785

Dynmaze V1 9x9 LCI-Net 9 0:28 996 7:44:48 789

LCI-Net (ND) 5 0:21 828 4:49:48 789

QMDP-Net 0:26 920 6:38:40 1553

Dynmaze V2 9x9 LCI-Net 9 0:31 613 5:16:43 1557

LCI-Net (ND) 5 0:26 463 3:20:38 1557

) QMDP-Net 2:48 451 21:02:48 4893

Grid 3D 7x7x7 1 CI-Net (ND) 7 2:26 609 24:41:54 4913

QMDP-Net 5:43 544 51:49:52 527

Grasper 2D 14x14 1 CT-Net (ND) 5 5:57 329 32:37:33 529

QMDP-Net 3:33 371 21:57:03 5405

Grasper 3D 7x7x7 L CI-Net (ND) 7 3:10 304 16:02:40 5421

an increase in required memory, the rate of growth in memory consumption is very
close to that of QMDP-Net.

6 Summary

Many neural network architectures for solving stochastic planning with partially un-
known models based on end-to-end learning have been proposed. Across these archi-
tectures, there are a number of seemingly small components that have been used re-
peatedly, creating a great potential benefit in improving the efficiency of these compo-
nents. Improvements in these components will likely improve the overall performance,
similar to how improvement in “primitive” computations in motion planning improves
the performance of the overall planning capability. Taking a step in this direction, this
paper presents LCI-Net, a neural-network module that computes one-step information
propagation governed by a learned stochastic model of the system’s dynamics. It is a
simple neural-network module that can be plugged into various neural network archi-
tectures. Evaluating LCI-Net on QMDP-Net[9]], and hence on E2E-HF[7]], on 2D and
3D navigation and grasping benchmarks indicate that LCI-Net creates significant gains
in performance, with generalisation capability increased by a factor of up to 10.

7 Acknowledgements

Nicholas Collins is supported by an Australian Government Research Training Program
(RTP) scholarship provided by the University of Queensland.

References

1. Neural networks, types, and functional programming. |http://colah.github.io/posts/
2015-09-NN-Types-FP/, published: 2019-09-03

http://colah.github.io/posts/2015-09-NN-Types-FP/
http://colah.github.io/posts/2015-09-NN-Types-FP/

16

10.

11.

13.

14.

15.

17.

18.

19.

20.

21.

22.

Collins and Kurniawati

. Francois-Lavet, V., Bengio, Y., Precup, D., Pineau, J.: Combined reinforcement learning via

abstract representations. In: AAAL vol. 33, pp. 3582-3589 (2019)

. Gupta, S., Davidson, J., Levine, S., Sukthankar, R., Malik, J.: Cognitive mapping and plan-

ning for visual navigation. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (Jul 2017), jhttp://dx.doi.org/10.1109/CVPR.2017.769

. Haarnoja, T., Ajay, A., Levine, S., Abbeel, P.: Backprop KF: Learning discriminative deter-

ministic state estimators. In: NIPS Conference (2016)

. Hausknecht, M., Stone, P.: Deep recurrent Q-learning for partially observable MDPs. In:

AAAI 2015 Fall Symposium (2015)

. Howard, A., Roy, N.: The robotics data set repository (radish) (2003), http://radish.

sourceforge.net/

. Jonkowski, R., Brock, O.: End-to-end learnable histogram filters (2017)
. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable

stochastic domains. Artificial intelligence 101(1-2), 99—134 (1998)

. Karkus, P, Hsu, D., Lee, W.S.: QMDP-net: Deep learning for planning under partial observ-

ability. In: NIPS Conference (2017)

Karkus, P., Hsu, D., Lee, W.S.: Particle filter networks with application to visual localization.
In: CoRL Conference (2018)

Karkus, P., Ma, X., Hsu, D., Kaelbling, L.P., Lee, W.S., Lozano-Perez, T.: Differentiable
algorithm networks for composable robot learning. In: Robotics: Science and Systems (2019)

. Lisa Lee and Emilio Parisotto and Devendra Singh Chaplot and Eric Xing and Ruslan

Salakhutdinov: Gated Path Planning Networks. In: ICML Conference (2018)

Littman, M.L., Cassandra, A.R., Kaelbling, L.P.: Learning policies for partially observable
environments: Scaling up. In: ICML (1995)

Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard, A.J., Banino, A., Denil, M.,
Goroshin, R., Sifre, L., Kavukcuoglu, K., Kumaran, D., Hadsell, R.: Learning to navigate
in complex environments. In: ICLR Conference (2016)

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves,
A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D.: Human-
level control through deep reinforcement learning. Nature 518, 529 EP (Feb 2015), https:
//doi.org/10.1038/nature 14236

. Oh, J., Guo, X,, Lee, H., Lewis, R.L., Singh, S.: Action-conditional video prediction using

deep networks in atari games. In: NIPS Conference. pp. 2863-2871 (2015)

Oh, J., Singh, S., Lee, H.: Value prediction network. In: NIPS Conference. pp. 6118-6128
(2017)

Okada, M., Rigazio, L., Aoshima, T.: Path integral networks: End-to-end differentiable opti-
mal control (2017)

Shankar, T., Dwivedy, S.K., Guha, P.: Reinforcement learning via recurrent convolutional
neural networks. In: ICPR Conference. pp. 2592-2597 (Dec 2016)

Sondik, E.: The optimal control of partially observable Markov processes. Ph.D. thesis, Stan-
ford University (1971)

Tamar, A., Wu, Y., Thomas, G., Levine, S., Abbeel, P.: Value iteration networks. IJCAI Con-
ference (Aug 2017)

Wabhlstrom, N., Schon, T.B., Deisenroth, M.P.: Learning deep dynamical models from image
pixels. In: The 17th IFAC Symposium on System Identification (SYSID) (2015)

http://dx.doi.org/10.1109/CVPR.2017.769
http://radish.sourceforge.net/
http://radish.sourceforge.net/
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236

	Locally-Connected Interrelated Network: A Forward Propagation Primitive

