Point-Based Policy Transformation:
Adapting Policy to Changing POMDP Models

Hanna Kurniawati and Nicholas M. Patrikalakis

Abstract Motion planning under uncertainty that can efficiently take into account
changes in the environment is critical for robots to operate reliably in our living
spaces. Partially Observable Markov Decision Process (POMDP) provides a sys-
tematic and general framework for motion planning under uncertainty. Point-based
POMDP has advanced POMDP planning tremendously over the past few years,
enabling POMDP planning to be practical for many simple to moderately difficult
robotics problems. However, when environmental changes alter the POMDP model,
most existing POMDP planners recompute the solution from scratch, often wasting
significant computational resources that have been spent for solving the original
problem. In this paper, we propose a novel algorithm, called Point-Based Policy
Transformation (PBPT), that solves the altered POMDP problem by transforming
the solution of the original problem to accommodate changes in the problem. PBPT
uses the point-based POMDP approach. It transforms the original solution by modi-
fying the set of sampled beliefs that represents the belief space B, and then uses this
new set of sampled beliefs to revise the original solution. Preliminary results indi-
cate that PBPT generates a good policy for the altered POMDP model in a matter
of minutes, while recomputing the policy using the fastest offline POMDP planner
today fails to find a policy with similar quality after two hours of planning time,
even when the policy for the original problem is reused as an initial policy.

1 Introduction

Motion planning under uncertainty that can efficiently take into account changes
in the environment is critical for robots to operate reliably in our living spaces.
Changes in our living spaces are unavoidable. New furnitures are added, water cur-
rent changes direction, etc. Despite these changes, robots need to reliably accom-
plish the given tasks in the midst of various control and sensing errors. For example,
imagine an Autonomous Underwater Vehicle (AUV) navigating around highly clut-
tered offshore oil platforms. Water currents that highly accentuates the AUV’s con-

Hanna Kurniawati.

School of Information Technology & Electrical Engineering,
University of Queensland.

e-mail: hannakur@ugq.edu.au.

Nicholas M. Patrikalakis.

Department of Mechanical Engineering, Center for Ocean Engineering,
Massachusetts Institute of Technology.

e-mail: nmp @mit.edu.

2 Hanna Kurniawati and Nicholas M. Patrikalakis

trol error, changes throughout the day. Many of these changes are very significant,
e.g., a 180" changes in the currents direction, making an optimal motion strategy at
a particular time may actually be a bad strategy when the AUV operates at a differ-
ent time. Despite the criticality of these changes, most changes are often limited to
localized regions. In this preliminary work, we are interested in local changes and
assume that the changes are known prior to execution.

To handle uncertainty, PBPT uses the Partially Observable Markov Decision Pro-
cess (POMDP), which is a systematic and general framework for motion planning
under uncertainty. Due to uncertainty, a robot never knows its exact state. Therefore,
a POMDP planner computes the best action to perform with respect to a set of states
that are consistent with the available information so far. Each set of states is repre-
sented as a distribution over the state space, called a belief, and the set of all beliefs
is called the belief space B. The action to perform is encoded as a mapping from
beliefs to actions, called a policy. Once generated, the optimal policy can be used
as a feedback controller for the robot. It is true that solving a POMDP exactly is
computationally intractable [15]. However by trading optimality with approximate
optimality for speed, point-based POMDP approach [16] has tremendously sped-up
POMDP planning, enabling it to be practical for many simple to moderately difficult
robotics problems [11, 22].

Now, when the environment changes, the POMDP model changes too. Methods
that can be used to handle changes in the POMDP model can be classified into two
extreme approaches. First is replanning. Off-line replanning that recomputes the
policy from scratch, using existing off-line POMDP planners, may waste significant
computation time, especially when the changes are small but significant, and the
problem is difficult such that even the fastest offline POMDP solvers today require
hours to solve it. Recent replanning methods, such as [7, 8, 17, 21], are fast, as they
are designed for on-line planning. But, these methods do not perform global plan-
ning in the belief space. Hence, they may cause the robot to fall into a catastrophic
state when such state exists. This is undesirable for highly critical tasks. The second
approach hedges over all possible changes [20]. It models all possible changes again
as a POMDP problem. Each parameter that may change is modeled as a state vari-
able of an enlarged POMDP problem. The enlarged POMDP problem can be solved
using existing POMDP planners and the generated policy is optimal over all possi-
ble changes in the POMDP model. But, the enlarged problem can quickly become
very large, beyond the capability of even the best POMDP solver today.

In this paper, we propose a novel algorithm, called Point-Based Policy Transfor-
mation (PBPT), that transform a pre-computed POMDP policy according to changes
in the POMDP model. By doing so, PBPT does not enlarge the POMDP problem
that needs to be solved, and hence is faster than the hedging approach. Although
slower than on-line replanning strategies. PBPT performs global planning in a re-
stricted part of B and finds the best policy in a restricted class of policies with high
probability, making it more suitable than on-line replanning for highly critical tasks.

PBPT uses the point-based POMDP approach. Key to point-based approach is
that it represents the belief space B using a representative set of sampled beliefs.
And then plans, i.e., performs Bellman updates, on only this set of beliefs, instead

Point-Based Policy Transformation: Adapting Policy to Changing POMDP Models 3

of the entire B. Now, when the POMDP model changes, the representative set of
beliefs is likely to change too. PBPT uses the difference between the new and the
original POMDP models to transform the representative set of beliefs. It identifies
beliefs that are affected by the changes and are unlikely to be part of a representative
belief set in the new problem. It replaces such beliefs by re-sampling B. Once the
set of representative beliefs is fixed, PBPT revises the policy by performing Bellman
updates at selected beliefs to avoid unnecessary update operation.

Suppose a policy class IT is the set of all possible policies for the new POMDP
model, where the mapping from unaffected beliefs is the same as the mapping from
these beliefs in the original policy. Then, PBPT converges to a good approximation
of the best policy in IT or better, with high probability. Furthermore, preliminary
results indicate that PBPT generates a good policy for the revised POMDP model in
a matter of minutes, while recomputing the policy using the fastest offline POMDP
planner today fails to find a policy with similar quality after two hours of planning
time, even when the original policy is reused as an initial policy.

2 Background and related work

2.1 POMDP background

A POMDP is specified as a tuple (S,A,0,T,Z,R, by, 7), where S is the set of states,
A is the set of actions, and O is the set of observations. In each step, the agent is
in a state s € S, takes an action a € A, and moves from s to an end state s’. Due
to the uncertainty in action, the end state s’ is modeled as a conditional probability
density function T'(s,a,s’) = f(s'|s,a). The agent may then receive an observation.
Due to the uncertainty in observation, the observation result 0 € O is again modeled
as a conditional probability density function Z(s',a,0) = f(o|s’,a). In each step,
the agent receives a reward R(s,a), if it takes action a from state s. The agent’s
goal is to maximize its expected total reward by choosing a suitable sequence of
actions. When the sequence of actions has infinite length, we specify a discount
factor y € (0, 1) so that the total reward is finite and the problem is well defined.

A POMDP planner computes an optimal policy that maximizes the agent’s ex-
pected total reward. A POMDP policy w: B — A prescribes an action a, given the
agent’s belief b. A policy 7 induces a value function V (b,) which specifies the
expected total reward of executing policy 7, and is computed as

V(b,m) = E[i Y R(s;,a;)|b, 7] (1)
t=0

A policy can be represented by various representations, e.g., policy-graph [2], -
function [18], or pairs of belief and action [25] for continuous state space.

To execute a policy 7, an agent executes action selection and belief update re-
peatedly. For example, if the agent’s current belief is b, it selects the action referred
to by a = m(b). After the agent performs action a and receives an observation o
according to the observation function Z, it updates b to a new belief ' given by

4 Hanna Kurniawati and Nicholas M. Patrikalakis

b'(s") = t(b,a,0) = nZ(s',a,0) T(s,s,s')ds (2)

sES

where 7] is a normalization constant.

2.2 Related work

Many motion planners have been proposed to handle changes in the environment,
e.g., [4,9, 14, 23]. However, they do not consider partial observability of the sys-
tem. The work in [13] considers a limited partial observability property, i.e., partial
predictability of the environment, but they do not take into account errors in the
robot’s control and sensing.

POMDP is a systematic and general approach for planning under uncertainty.
Although solving a POMDP exactly is computationally intractable [15], in the past
few years, different approaches have been proposed to make POMDP planning more
practical. Several work restricts the beliefs to be Gaussian, e.g., [3, 19].

Point-based POMDP does not restrict its distribution and has tremendously ad-
vanced POMDP planning. It reduces the complexity of planning in B by represent-
ing B as a set of sampled beliefs and planning with respect to this set only. To gener-
ate a policy, most point-based POMDPs use value iteration, utilizing the fact that the
optimal value function satisfies Bellman equation. They start from an initial policy,
represented as a value function V. And iteratively perform Bellman backup on V at
the sampled beliefs, i.e., V(b) = maxaea (R(b,a) + YL, c0 T(b,a,0)V*((b,a,0)))
where V*(b') is the current best value of b'. The iteration is performed until it con-
verges. Over the past few years, impressive progress have been gained by improving
the strategy for sampling B [11, 16, 22]. Although these planners were designed for
discrete state space, they can be extended to handle continuous state space, by re-
placing their policy representation and backup operation with policy representation
and backup operation designed for continuous state space, e.g., [2, 18, 25]. How-
ever, most work in point-based POMDP does not handle changes in the model. We
propose a point-based POMDP planner to handle changes in the POMDP model,
where the changes are known prior to execution, by modifying a pre-computed op-
timal policy of the original problem.

The idea of policy modification resembles path deformation, e.g., [12]. But, most
work in path deformation do not consider partially observable systems.

Modifying an optimal policy of one POMDP problem to solve another POMDP
problem, can be considered as a transfer learning problem. However, most work in
transfer learning focus on finding the mapping from one problem to another or from
one solution to another [24]. We propose an algorithm to identify parts of the policy
that needs to be modified and how to modify the policy, based on the differences
between two POMDP models.

Point-Based Policy Transformation: Adapting Policy to Changing POMDP Models 5
3 Overview

3.1 PBPT’s goal

Before defining PBPT’s goal more formally, let’s first discuss the model changes
and their effect on beliefs more formally. Suppose P, = (S,A,0,T,,Z,,R,,bo,7) is
the original POMDP model. PBPT assumes that the state space S is a metric space,
and can be continuous or discrete. It assumes that the action space A and obser-
vation space O are discrete. Suppose to accommodate environmental changes, the
original model P, is revised to a new POMDP model P, = (S,A,0,T,,Z,,R,, by, 7).
PBPT can handle any changes in the POMDP model, as long as there is a bijection
from the state, action, and observation spaces in the original model to their corre-
sponding spaces in the revised model. To simplify notation, here we assume that the
bijection is an identity map and use the same notation for these spaces in P, and P,.
Furthermore, we assume that the initial belief by does not change.

Changes from P, to P, affect a subset of S, which we denote as S.,(P,,P,) C S
and define as,

Sen(Py, Py) = {s eS| Hsres’aeATo(s,a,s’) # T, (s,a,s')V
3aeA,()EOZo(Saav 0) # 7y (S, a, 0) \ EIaEARo(Saa) # Rn(saa)} .

For writing compactness, we use S, to refer to S, (P, P,). PBPT assumes that S,
consists of one or more connected components, where each connected component
is a closed set, forming a simple polytope.

Now, we can use the notion of affected states to discuss affected beliefs. Let 7
be the optimal policy that has been pre-computed for P,. Key to PBPT in revising
a policy is to first revise the set of representative beliefs. The set of representative
beliefs is sampled from the set Z;; (by) of beliefs that are reachable from the initial
belief by € B under 7 in P,. For writing compactness, we use %, to refer to %, (bo).
To identify which beliefs in the original set of representative beliefs need to be
replaced, we classify %, into three classes, i.e., directly affected, indirectly affected,
and unaffected.

A belief b €) is in the directly affected class, denoted as B, whenever its sup-
port intersects S.;,. A belief b € Z; is in the indirectly affected class, denoted as B.,,,
whenever its support does not intersect S.;, but at least one of the beliefs reachable
from b under 7 is directly affected. More formally, the set of indirectly affected be-
liefs is B, = {b € Z, | support(b) NS¢y = O Asupport (%, (b)) NS¢, # 0} where
support(%, (b)) = Upez:) support(b'). Beliefs in %, (bo) that are not directly
affected nor indirectly affected belong to the unaffected class, denoted as B,,.

This classification reflects the effect of model changes on the value function, too.
Let V, (b,) be the value of executing 7’ from b in P,, and V,,(b,) be the value
of executing 7, from b in P,. Then, the relation can be defined more formally as,

Lemma 1. Suppose P, = (S,A,0,T,,Z,,R,,bo,7Y) changes to P, = (S,A,0,T,,Z,,R,,bo, 7).
Forany b € B, if support(b)NSe, =0 and support(Z; (b)) NSep, =0, then V, (b, 7}) =
Vo(b, 73).

6 Hanna Kurniawati and Nicholas M. Patrikalakis

Proof. The proof is straightforward by using induction on the planning horizon.
For the base case (planning horizon 1), V,(b,7}) = V,(b,n}) because the reward
functions of performing any action from any state in support(b) remain the same.
Let’s assume that V,, (b, 7}) =V, (b,) for planning horizon 4. For planning horizon
h+1,V,y(b,7;) =R(b,m; (b)) + ¥ [,co T(b,a,0)V(t(b,a,0))do where V(t(b,a,0))
is the value of 7(b,a,0) computed using 4 planning horizon. Since b is not affected
by any changes, R(b, (b)) and ©(b,a,0) for any observation o € O remain the

same. Using the assumption on planning horizon k, V,, (b, 7)) = V,(b,x}). O

Using the above classification, we can define PBPT’s goal more formally. Sup-
pose II(x*,P,,P,) = {n € Iy | Vpep\ (8, UBL,,)”(b) = ﬂj(b)} where IT,, is the set
of all possible POMDP policies for P,. Then, PBPT’s goal is to find the best policy,
i.e., T, = argmaxzcry(z: p, p,) Va(bo,), from the policy class IT(7}, Py, By).

(¢

3.2 Overview of the algorithm

Algorithm 1 Point-Based Policy Transformation (x;, P,, P,)

1: Initialize T with a sampled representation of Z,;.
2: Classify the nodes of T into indirectly affected, directly affected, and unaffected nodes.
3: m, = Initialize with 7.
4: while Termination condition not satisfied do
5: Sample an indirectly affected node b from T'.
6: Let (bo,by,...,by,D) be the path from by to b in T.
7. NodeStackToBeBackup.clear();
8: fori=0tondo
9: NodeStackToBeBackup.push(b;).
10: NodeStackToBeBackup.push(b).
11: while b is not unaffected AND expansion still likely to improve V;,(bo, ,) do
12: Select an action a € A and an observation o € O.
13: Letb' =1 (b, a, 0).
14: Insert &’ as a child of hin T.
15: NodeStackToBeBackup.push(®').
16: b="b.
17: while NodeStackToBeBackup is not empty do
18: b = NodeStackToBeBackup.pop()
19: Backup(b, m,).

Key to PBPT is to transform a policy by revising the set of sampled beliefs that
represents B. Given an optimal policy 7, for the original problem P,, PBPT starts by
constructing a representative set of sampled beliefs for P, (line 1 of Algorithm 1). To
this end, PBPT samples the set %, of beliefs reachable under 7} in P, and represents
them as a belief tree 7. Each node of T represents a sampled belief and the root is
bo. PBPT represents each belief as unweighted particles. In this paper, we refer
to the nodes of T and their corresponding beliefs interchangeably, and use the same
notation. Each edge bb’ represents a pair of action—observation a—o where a € A and
0 € 0, such that b’ = 7(b, a,0). Details on how PBPT samples % are in Section 4.1.

Suppose P, is the new problem. PBPT uses the difference between P, and P, to
classify the nodes in 7 into the directly affected, indirectly affected, and unaffected

Point-Based Policy Transformation: Adapting Policy to Changing POMDP Models 7

nodes (Figure 1), as discussed in Section 3.1 (line 2 of Algorithm 1). Details on how
PBPT classifies the nodes are in Section 4.2.

Once the classification is done, PBPT
revises T by selecting an indirectly affected

" indirectly node to be expanded (line 5 of Algorithm 1),
. affected, | and performs deep sampling from the se-
T” lected node (line 11-16 of Algorithm 1).
_________________________________ Suppose Z, is the set of beliefs reachable
! directly from bg under an optimal policy 7, for the
! affected new problem P,. Then to revise T, ideally

LA S N — we want to replace nodes of 7 that are not
in Z; with beliefs that lie in £, and for
efficiency, we want to replace the small-
est number of nodes possible. Of course,
we do not know &, in advance, as know-
ing this is the same as knowing 7. But we
. can use the observation that, even when the
same node would have the same action la-
bel, as the initial 7 is a sampled representa- changes from F, to F, decrease the reward
tion of Z;;. The nodes outside the rectangle of all states in S.;, by much, an indirectly af-
and bounding curve are unaffected beliefs. ~ fected belief b may still have a high value,
and hence lies in &%, if after reaching b,
there is a strategy for the robot to maneuver, to avoid reaching beliefs whose sup-
ports intersect S.,. Utilizing this observation, PBPT selects an indirectly affected
node to start further expansion of 7. Details on how to choose an indirectly affected
node for expansion and how a deep sampling is performed are in Section 4.4.

When an unaffected belief is sampled, a deep sampling is stopped (line 11 of
Algorithm 1). By doing so, PBPT avoids recomputing the policy at beliefs where
the mapping from the original policy does not need to be revised.

To approximate the set B, of unaffected beliefs, PBPT constructs an end-game
region around each unaffected node of 7. An end-game region is the set of points
that lie within a threshold distance away from an unaffected node of 7. When a
newly sampled belief falls inside the end-game region, the deep sampling is ter-
minated, as we can and will reuse the mapping from 7. The details on end-game
region construction are discussed in Section 4.3.

To revise the policy, PBPT performs repeated backup operations starting from
the newly inserted nodes all the way to the root (line 17-19 of Algorithm 1). By
doing so, PBPT avoids unnecessary backup operations.

Fig. 1 The initial 7. All out-edges of the

4 Point-Based Policy Transformation

4.1 Initializing the belief tree T

To initialize the belief tree T using a sampled representation of %, PBPT simulates

executing 7 from by in P, multiple times. The required number of simulation runs
is discussed in Section 5. Remember that due to uncertainty, the robot does not

8 Hanna Kurniawati and Nicholas M. Patrikalakis

know the actual state it visited. Therefore, in each simulation run, PBPT maintains
two traces. One is a state trace, representing the sequence of states visited by the
robot. Another is a belief trace, representing the sequence of beliefs that estimates
the sequence of states visited by the robot.

To start a simulation run, PBPT samples a state so € S from by, and sets sg as
the actual starting state of the robot. Then, it simulates the robot performing ac-
tion 7} (bp). To simulate the action, PBPT samples the robot’s next state s € S
from T (so, 7, (bo),s), samples an observation o € O perceived by the robot from
Z(s,m}(bg),0), assigns the reward R(so, 7} (bg)) to the robot, and computes the
robot’s next belief as b = t(bo,7; (bo),0). If the belief b is not yet a child of by
in T, PBPT inserts b as a child of by. Regardless of whether b is just inserted or is
already available, the sampled state s is added to Sg(b), a set of states that represent
b’s support. Next, PBPT continues the simulation and insertion process iteratively
from b and s. This process is iteratively repeated for subsequent beliefs and states
until a large number of simulation steps is performed.

4.2 Classifying the nodes of T

To identify nodes of T that are directly affected, PBPT finds the nodes whose sup-
port sets intersect S.;. The main consideration here is the ability to handle many
different changes to the original POMDP model P,, efficiently. For this purpose,
PBPT takes the union [J,c7 Sp(b) of the support states, and structures them in a
range tree data structure. PBPT also computes the bounding hyper-rectangle of each
connected subset of the affected state space regions S,;,. For each bounding hyper-
rectangle, PBPT queries the range tree. Then, it tests each state s in the query result
whether s is in the connected subset bounded by the hyper-rectangle. For each s in
Scn, PBPT sets each belief b of T that has s in its Sg(b) as a directly affected belief.

Once all directly affected nodes in 7 have been identified, the indirectly affected
nodes are then all ancestors of each directly affected node that are not themselves
directly affected. Nodes that are not directly nor indirectly affected are identified as
unaffected nodes.

The above strategy requires additional time to construct the range tree, but once
the range tree is constructed, finding directly affected nodes of T' can be done fast.
Suppose T contains N nodes, and the set Sg(b) of each node b in T has size m.
To construct the range tree structure, PBPT requires O(Nmlog?~!(Nm)) time [5],
where d is the dimension of S. Now, suppose we are given S, that consists of M
connected subset. For each subset, PBPT constructs a bounding hyper-rectangle.
The time to query the states that lie inside a hyper-rectangle dominates the time for
testing if a state s in a query result lies in S, and the time for finding the nodes of
T that has s in its support. Therefore, the total time to find directly affected nodes is
O(M(log?(Nm) +k)) where k is the largest number of query result.

Point-Based Policy Transformation: Adapting Policy to Changing POMDP Models 9

4.3 Constructing the end-game region

Recall that the end-game region is the set of beliefs within a given threshold dis-
tance from at least one of the unaffected nodes of 7. Before discussing the distance
threshold, let’s first discuss the metric we use.

To compute distance in B, PBPT uses the Earth Mover’s Distance (EMD). EMD
between two beliefs computes the minimum expected state space distance, where
the minimum is taken over all possible joint distribution whose marginals are the
two beliefs. More precisely,

Dp(b,b') = inf{/ Ds(s,s")f(s,s')dsds' | b= / f(s,s')ds' b = /f(s,s’)ds}
f seSJs'es s s

where Dg(b,b') is the EMD between b and &' in B, Dg(s,s') is the distance between

sand s’ in S, and f is a joint density function.

Most point-based POMDP solvers do not use EMD, instead they use L1 distance
as metric in B The main difference between the two metrics is that EMD is depen-
dent on the underlying state space metric, while L1 is not. This difference makes
EMD a better indication of the value difference between two beliefs compared to
L1, when the state space is a metric space and the behavior of the system at nearby
states are similar, which is often the case in robot motion planning. The value func-
tion of a belief (eq. (1)) is computed based on two components, the belief and the
expected total discounted reward. EMD incorporates both components when the re-
ward function is Lipschitz continuous, while L1 can only incorporate one of them.

Using EMD in end-game region construction requires that nearby beliefs, under
EMD, would have similar optimal value, such that with a small error, one belief can
be used to represent other nearby beliefs. This requirement is indeed true, as the
value function of beliefs in B with EMD satisfies Lipschitz condition, i.e.,

Theorem 1. Suppose (S,Ds) and (B,Dg) are metric spaces, and for any state
s,s' € S and any action a € A, |R(s,a) —R(s',a)| < CDg(s,s'). If Dp(b,b') < 6,
then |V*(b) —V*(b')| < C 8 for any belief b,b’ € B.

Proof. Let’s first define D (s, s") = C Ds(s,s"). When the metric in S is DY, the EMD
of B becomes Dy (b,b") = CDg(b,b’).

Wlog, suppose the optimal policy is represented by a set I of o-functions.
Let Qp(s,a) =R(s,a) + ¥ Jyes T (5,a,5") Loco Z(s',a,0) 0, ,(s")ds' where o, , =
argmaxger [;cg0(s) - T(b,a,0)(s)ds. Then, the optimal value of b € B can be writ-
ten as V*(b) = maxaea ([;c5 Qb (s,a) - b(s)ds) and the value difference, is

[V*(b) = V*(t')| = max (- Op(s,a) .b(s)ds) — max (- Oy (s,a) .b’(s)ds>

acA acA

acA

< max (- Op(s,a)-b(s)ds — /ses Op(s,a) -b’(s)ds) 3)

We can bound Qp(s,a) from above, such that Qp(s,a) < R(s,a) + }/If”j‘;. Using this

bound in eq. (3) gives us

10 Hanna Kurniawati and Nicholas M. Patrikalakis

[V*(b) —V*(b')| < max < SESR(s,a) -b(s)ds —

acA

R(s,a)- b’(s)ds) 4)

seS

Using the Kantorovich distance [6], i.e., K(b,b) = sup,cy;,, (fics8(s)b(s)ds—
Jies8(s)b'(s)ds) where Lipy is the set of all 1-Lipschitz functions over S, we can
bound eq. (4). Using metric D, the reward function R satisfies 1-Lipschitz condition
for any action a € A, and so we have |V*(b) —V*(b')| < K(b,b').

Since the above Kantorovich distance is the dual of EMD D}, [6],
[V*(D) —V*(b')| < K(b,b") = Dp(b,b') = CDg(b,b). O.
In our prior work [10], we have shown Lipschitz condition for value function in B
with metric EMD. But, the requirement in the above theorem is much more relaxed
than the one in our prior work.

Since EMD is based on the metric in S, we can use heuristics on S to set the
threshold distance for constructing end-game region in B. Constructing reasonable
heuristics in S is much easier than in B. One heuristics that can be used is based
on the intuition that the maximum expected future rewards are similar when the
POMDP agent starts from nearby states where the transition and reward functions
are the same. Using this heuristics, the threshold distance for a belief b is the max-
imum between the expected nearest distance to states with different transition and
reward function and the expected threshold distance in S.

4.4 Sampling new beliefs

To select which node of T to start deep sampling from, we want to choose a com-
bination of starting nodes that improves the value of by the most in the least time
possible. Of course, we do not know which combination of nodes would generate
such improvement. Therefore, PBPT uses Exp3.S, an adaptive selection strategy
based on sampling history that is guaranteed to be close to the best combination [1].

Suppose Ty = {b1,b2,...,bx}. Using Exp3.S, at iteration-r PBPT selects a node
b; € Ty with probability

N _ Wt(b,') E
P(e) = (=PI s+ ®

where wy (b;) is a weight that reflects how much starting deep sampling from b; has
improved the value of by in the past and 8 € (0, 1) is a fixed constant. Once a node
b; is sampled, PBPT starts a deep sampling from b;. After the deep sampling is
terminated, PBPT backups the nodes in the path traversed during deep sampling,
starting from the last node inserted to 7 all the way to the initial belief by. Next,
PBPT updates the probability in eq. (5) according to how much the value of by
improves. It updates the weight as,

x(b;)

K
e
w18 = w) 4 5 3 w0

Vi (bo, 1) —V4™ ! (bo,m2)
. . ‘R)716LX‘/(17Y) . . .
wise, Vj (bo, m) is Va(bo, ™) after iteration-. Note that due to backup operation,

where x;(b;) = if b; was selected at iteration-t and O other-

Point-Based Policy Transformation: Adapting Policy to Changing POMDP Models 11

Vi(bo,m) > Vi~ (bo, m), and so x,(b;) > 0. The notation M denotes the total num-
ber of deep sampling PBPT performs.

PBPT’s deep sampling strategy is similar to SARSOP. SARSOP maintains an
upper and lower bounds for each node in 7. The upper bound is the expected value
assuming deterministic action, while the lower bound is the value of the belief in the
current policy. Given b, PBPT chooses an action a € A with the highest upper bound,
and an observation o € O that is expected to reduce the gap between the upper and
lower bound the most. A new belief 4’ is computed as 7(b,a,0) and then inserted to
T. Then, the expansion continues starting from &' until either the gap between the
upper and lower bound becomes too small to cause improvement on gap reduction
on the root. PBPT stops the expansion that starts from b when the newly sampled
belief is unlikely to reduce the gap at the root, or when the newly sampled belief is
in the end-game region. When the newly sampled belief is in the end-game region,
the mapping from belief to action from the original policy can be used.

5 Convergence

Now, the question is whether PBPT converges to the best policy in IT(x, P,, P,). To
discuss convergence, we need to consider three main components of PBPT. First,
the strategy to exclude nodes in the end-game region from expansion and backup
operations. Second, the strategy for selecting a starting node for deep sampling.
Last, the strategy for deep sampling.

The main concern in excluding beliefs in the end-game region from expansion
and backup operations is that, PBPT may misclassify a sampled belief to be in the
end-game region, while it is actually not. Suppose B, is the set of unaffected nodes
in the initial 7. To identify if a belief b in the initial T is in B, or not, PBPT samples
a set of state traces (Section 4.1), starting from a state sampled from the support of
b. If state traces that intersects Sy, exist, but PBPT fails to sample even one of them,
b will be wrongly identified as unaffected node, and hence wrongly included in the
end-game region. Since PBPT will not improve the value of beliefs in the end-game
region, this misclassification may cause PBPT to fail to converge to the best policy
inII(x},P,,P,).

However, it turns out that with a small number of independently sampled state
traces, the effect of misclassification in the end-game region can be kept low.
Theorem 2. Suppose p; is the probability that a state trace sampled from % (b;)
for any b; in the initial T intersects S¢p, and pyin = ming,ep, p;. Assume that each
state trace from a node b in the initial T starts from a state in support(b) and
that the starting state is sampled independently from the same distribution b. If

Z:(b) of each belief b in the initial T is represented by n > % state traces,

then P(% nodes in the initial T that are misclassified as unaffected < €) > (1 —9),
where €,6 € (0,1] is a small constant.

Proof. Let’s first compute the smallest number n of sampled state traces needed to
ensure that P(b is misclassified) < m for any belief b € B, and m € [0, 1]. Assuming
that each state trace starts from a state in support(b) and is sampled independently
from the same distribution b, we can compute n using binomial distribution with

12 Hanna Kurniawati and Nicholas M. Patrikalakis

success probability p,i,. The result is that n > m(ﬁ% state traces are needed to

guarantee that P(b is misclassified) < m.)
Now, let X be the random variable that denotes the number of beliefs in 7 that
are misclassified as unaffected nodes. We can represent X as a binomial distribution

with success probability at most m, and computes

P(X <eN)=1—P(X > ¢N)

Nm

>1-—

- EN
where N is the total number of nodes in the initial 7. The last inequality is computed
using Markov inequality. To ensure that P(X < eN) > (1 — &), we need m = €9.
Inserting this value of m to the lower bound of n that ensures P(b is misclassified) <

m yields the desired result. O.

The above theorem computes the smallest number of traces to guarantee small mis-
classification in B, with high probability. But, the end-game region is larger than
B., as it is the set of all beliefs within a threshold distance from at least one be-
lief in B,. However, since the value function satisfies Lipschitz condition (Theo-
rem 1), when the threshold distance is small, the difference between Va2 (b, 7;) and
Vo(b',7}), where b is in the end-game region and b’ € B, is b’s nearest belief in
B, is small too. Hence, the effect of misclassified beliefs in the end-game region to
PBPT convergence depends mostly on the misclassification in B,.

Opposite to the above discussion, some beliefs that are supposed to be in the
end-game region may not be sampled in the initial 7. Hence, these beliefs are not
identified as part of the end-game region. When they are sampled during expansion
of T, PBPT continues expanding and performing backups from them. As a result,
PBPT may converge to a policy that is better than the best policy in II (7}, P, P,).

Convergence to better than the best policy in IT(x, P,, P,) may also happens due
to luck. When we use a global policy representation, such as ¢¢-functions, the value
of beliefs in the end-game region may improve because of the backup operations at
some farther beliefs that are not in the end-game region.

The last two components of PBPT do not worsen the convergence results. PBPT
deep sampling strategy is the same as SARSOP, which converges to the optimal
policy. But unlike SARSOP, PBPT starts sampling from an indirectly affected node
in the initial 7', instead of from by. Starting deep sampling not from by may cause
the sampling to be incomplete, in the sense that it may never cover the beliefs that
are critical to generate an optimal policy. However, Ty always contains by and the
strategy PBPT uses to sample a starting node from T always assigns non-zero prob-
ability for each belief in 7p. Hence, PBPT sampling is complete, which means that
PBPT strategies in the first two steps does not change the above convergence results.

Since PBPT fails to converge only when there are misclassified beliefs in the
end-game region, Theorem 2 shows that with a small number of state trace sam-
ples, PBPT converges to a good approximation of the best policy in IT(x}, P,, P,) or
better, with high probability.

Point-Based Policy Transformation: Adapting Policy to Changing POMDP Models 13

6 Experiments
6.1 Scenarios

We tested PBPT on two sce-
narios (Figure 2) of an AUV nav-
igating around offshore platforms,
where the environment around the
platform changes prior to the AUV
deployment. In both scenarios, the
AUV is set to operate at a partic-
ular depth. Hence, these are 2D
navigation under uncertainty prob-

* lems. Although this problem seems
simple, the highly accentuated con-
_ o~] L . —| trol error due to water current and
i (w / ~21 vortex, unavailability of GPS un-
(derwater, and the highly cluttered
environments make the problem
difficult. Most AUVs handle un-
certainty and environmental changes
(b) Scenario-2. using Var?ants of reactive grc?edy.
But reactive greedy often fails in

Fig. 2 Scenarios. In each scenario, left: original prob- highly cluttered environments, as
lem, right: modified problem. The rectangles labeled 'I" he planning horizon is often too
is pos,s1b’1_e initial posﬁ}on of th(? AUV: The circle la- short. State of the art POMDP
beled *G’ is the goal region. The circle without labels are . . .
regions where the AUV can localize well. Rectangles planner requires Slgmﬁcan_t time
marked with crosses are bounding rectangles of vortex ~ tO generate reasonable policy for
center regions. In the right-most picture, rectangle col- these problems.

ored light grey indicates the region significantly affected The first scenario is shown in
by a vortex, while v in the large crossed rectangle de-
notes the vortex center .

Figure 2(a). The state space S is
a continuous 2D space of size
250mx250m, populated by obstacles (colored dark grey). The initial state of the
AUV is not known exactly. It is uniformly distributed inside the rectangles marked
with "I’. The action space is discretized into 5 actions, Move-North, Move-East,
Move-South, Move-Northeast, and Move-Southeast. Due to motion error, whenever
the AUV performs an action, it never reaches its intended next state, it is always off
by within 2.5m radius from its intended destination. For AUV localization, several
transponders with various maximum range are placed in the environment. When-
ever the AUV is within a transponders’ coverage (inside a circle with no label), it
can localize itself with 100% accuracy. Otherwise, the AUV does not receive any
observation. The AUV receives a reward of 100,000 when it reaches the goal re-
gion (circles labeled with G’). The environment contains local vortices whose cen-
ter regions are in the rectangles marked with crosses. These vortex center regions
should be avoided by the AUV as it may damage the vehicle. Therefore, if the AUV
passes through the crossed rectangle, we assign a penalty of -25,000. Each move

14 Hanna Kurniawati and Nicholas M. Patrikalakis

is penalized by -1, as it takes energy. The original problem is in the left picture of
Figure 2(a). Due to changes in the water flow, new vortices appear as shown in the
right picture of Figure 2(a). Here, the changes are in the reward function of the states
inside the new crossed rectangle.

The second scenario is shown in Figure 2(b). The AUV model, including its
control and observation model, the reward function, and the legends are the same
as in Scenario-1. But here, the changes is in the region affected by the vortex. Due
to changes in the speed of the water flow, the vortex on the right becomes much
stronger. As a result, when the AUV is at a state s inside the rectangle colored light
grey in the right picture of Figure 2(b), the AUV drifts as much as |J (v —s)| towards
the vortex center, denoted as v. Here, the changes are in the transition function of
the states inside the light grey rectangle, but not the reward function.

6.2 Experimental setup

We implemented PBPT in C++, and use MCVI for policy computation from sam-
pled beliefs. We compared PBPT with off-line replanning and policy reuse strategy.
Both replanning and policy reuse use SARSOP [11] with MCVI [2] policy compu-
tation. In Policy reuse, we use the optimal policy of the original problem as an initial
policy. All experiments were conducted in a PC with 2.27GHz Intel processor and
1.5GB RAM. Below is our experimental setup for each problem scenario.

To test PBPT, we first generate 30 different policies for the original problem, us-
ing SARSOP+MCVI with 2 hours of planning time. For each policy, we ran PBPT
10x to solve the modified problem. For each original policy, 10 modified policies
are generated after every 10 minutes interval, for up to 2 hours. To compute the
reward level reached by each modified policy, we ran 500 simulation runs and com-
pute the average total discounted reward of the runs.

To test the performance of policy reuse, we use the same 30 original policies used
to test PBPT. For each policy, we ran SARSOP+MCVI with the original policy as
the initial policy, for 10X to solve the modified problem. Similar to PBPT, for each
original policy, 10 new policies is generated after every 10 minutes interval, for up
to 2 hours. And, for each new policy, we ran 500 simulation runs and computed the
average total discounted reward. To test the performance of replanning, we generate
30 policies for the modified problems using SARSOP+MCVI, after every 10 min-
utes interval, for up to 2 hours. To compute the reward level reached by a policy, we
ran 500 simulation runs, and computed the average total discounted reward.

6.3 Results

The results are in Figure 3. They indicate that PBPT can generate a good policy for
the modified problems much faster than replanning and policy reuse strategies.

It is interesting to compare PBPT with policy reuse, as policy reuse reuses the
policy of the original problem too. The main difference between the two is that in
addition to the original policy, PBPT reuses the difference between the original and
modified problems to guide belief space sampling. By doing so, PBPT can quickly
construct a representative sampled representation of %, and focus on modifying
critical parts of the original policy. Although policy reuse does use the original pol-

Point-Based Policy Transformation: Adapting Policy to Changing POMDP Models 15

45000

_ 40000 aeehreree e
] AT
E 35000 aA —
. . e
T 30000 A e o e EOE
s
2 25000
Q
20000
? 15000 ~+Replanning
e Dol
E 10000 Policy reuse
-#-PBPM — — - —
5000 TN N N ™
10 20 30 40 50 60 70 80 S0 100 110 120] . N -/
Time (minutes)
(a) Results of Scenario-1.
50,000
ae A
_ o ‘..‘"A‘AAAAA
(] A
2 10 20.-30 40 50 60 70 80 90 100 110 120
= -50,000 -
e L
g 4 -
3 -100,000 -
2 i
@ .
 -150,000 &
e —+Replanning
< -200,000 = Policy reuse
-#-PBPM
-250,000 - -
Time (minutes)

(b) Results of Scenario-2.

Fig. 3 Simulation results. Left: The average reward level of the policies. Middle: A typical simu-
lation run of the original policy. Right: A typical simulation run of the policy generated by PBPT.

icy as an initial lower bound in SARSOP planning, and hence uses the original
policy to indirectly guide its belief space sampling, policy reuse ignores informa-
tion about the changes in the POMDP model. As a result, it is not as focused as
PBPT in its belief space sampling, and hence is much slower in generating a good
policy for the modified problems.

The middle and right most pictures in Figure 3 show typical simulation runs of
the original policy and the modified policy generated by PBPT. The simulation runs
indicate that in both scenarios, a good strategy for passing through the channels in
the left should not change, as there are no change in that part of the environment.
PBPT utilizes this information and focus more on modifying the strategy for moving
after the AUV passes the left channel.

7 Conclusion

We propose a point-based algorithm, called Point-Based Policy Transformation
(PBPT), that modifies a pre-computed policy according to changes in the POMDP
model. PBPT uses the difference between the original and modified POMDP mod-
els to identify subset of %, that is affected by the changes in the model. It uses
this information to guide belief space sampling, which is a critical component for
point-based POMDP planners. We show that PBPT converges to a good approxima-
tion of the best policy in IT(7}, Py, P,) or better, with high probability. Furthermore,
preliminary results indicate that PBPT can generate a good policy for the modi-
fied POMDP problems much faster than recomputing the policy using the fastest
POMDP planner today, even when the policy for the original problem is reused as
an initial policy.

Many avenues are open for future work. We are currently working on speeding
up PBPT, so that it can perform the modification on-line.

16

R

1

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.
24.

25

Hanna Kurniawati and Nicholas M. Patrikalakis

eferences

. P. Auer, N. Cesa-Bianchi, Y. Freund, and R.E. Schapire. The non-stochastic multi-armed
bandit problem. SIAM Journal on Computing, 32(1):48-77, 2003.
H. Bai, D. Hsu, W.S. Lee, and A.V. Ngo. Monte Carlo Value Iteration for Continuous-State
POMDPs. In WAFR, 2010.
J.v.d. Berg, P. Abbeel, and K. Goldberg. LQG-MP: Optimized Path Planning for Robots with
Motion Uncertainty and Imperfect State Information. In RSS, 2010.

. J.v.d. Berg and M. Overmars. Roadmap-based motion planning in dynamic environments.
IEEE TRO, 21(5):885-897, 2005.

. M.d. Berg, O. Cheong, M.v. Kreveld, and M. Overmars. Computational Geometry: Algorithms
and Applications. Springer-Verlag, 2000.

. R.M. Dudley. Real Analysis and Probability. Cambridge University Press, 2002.

. K. Hauser. Randomized Belief-Space Replanning in Partially-Observable Continuous Spaces.
In WAFR, 2010.

. R. He, E. Brunskill, and N.Roy. PUMA: planning under uncertainty with macro-actions. In
AAAI 2010.

. L. Jaillet and T. Siméon. A PRM-based motion planner for dynamically changing environ-
ments. In IROS, 2004.
H. Kurniawati, T. Bandyopadhyay, and N.M. Patrikalakis. Global motion planning under
uncertain motion, sensing, and environment map. In RSS, 2011.
H. Kurniawati, D. Hsu, and W.S. Lee. SARSOP: Efficient point-based POMDP planning by
approximating optimally reachable belief spaces. In RSS, 2008.
F. Lamiraux, D. Bonnafous, and O. Lefebvre. Reactive path deformation for nonholonomic
mobile robots. IEEE TRO, 20(6):967-977, 2004.
S.M. LaValle and R. Sharma. On motion planning in changing, partially-predictable environ-
ments. IJRR, 16(6):775-805, 1997.
P. Leven and S. Hutchinson. Real-time path planning in changing environments. IJ/RR,
21(12):999-1030, 2001.
C.H. Papadimitriou and J.N. Tsitsiklis. The Complexity of Markov Decision Processes. Math.
of Operation Research, 12(3):441-450, 1987.
J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for
POMDPs. In IJCAI pages 1025-1032, 2003.
R. Platt, R. Tedrake, T. Lozano-Perez, and L.P. Kaelbling. Belief space planning assuming
maximum likelihood observations. In RSS, 2010.
J.M. Porta, N. Vlassis, M.T.J. Spaan, and P. Poupart. Point-Based Value Iteration for Contin-
uous POMDPs. JMLR, 7(Nov):2329-2367, 2006.
S. Prentice and N. Roy. The Belief Roadmap: Efficient Planning in Linear POMDPs by Fac-
toring the Covariance. In ISRR, 2007.
S. Ross, B. Chaib-draa, and J. Pineau. Bayes-adaptive POMDPs. In NIPS, 2007.
S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. Online planning algorithms for POMDPs.
JAIR, 32:663-704, 2008.
T. Smith and R. Simmons. Point-based POMDP algorithms: Improved analysis and imple-
mentation. In UAI, July 2005.
A. Stentz. The Focussed D* Algorithm for Real-Time Replanning. In IJCAI, 1995.
M.E. Taylor and P. Stone. Transfer learning for reinforcement learning domains: A survey.
JMLR, 10(1):1633-1685, 2009.

. S. Thrun. Monte carlo POMDPs. In NIPS, pages 1064—1070, 2000.

Acknowledgements The authors thank Leslie P. Kaelbling and Tomas Lozano-Perez for fruitful
discussion, David Hsu for cluster computing usage, and the AdaComp group at SoC, NUS for
providing the MCVI code. This work is funded by the Singapore NRF through SMART, CENSAM.

