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Abstract— Probabilistic roadmap (PRM) planners have been
successful in path planning of robots with many degrees of
freedom, but sampling narrow passages in a robot’s configuration
space remains a challenge for PRM planners. This paper presents
a hybrid sampling strategy in the PRM framework for finding
paths through narrow passages. A key ingredient of the new
strategy is the bridge test, which reduces sample density in
many unimportant parts of a configuration space, resulting in
increased sample density in narrow passages. The bridge test
can be implemented efficiently in high-dimensional configuration
spaces using only simple tests of local geometry. The strengths
of the bridge test and uniform sampling complement each other
naturally. The two sampling strategies are combined to construct
the hybrid sampling strategy for our planner. We implemented
the planner and tested it on rigid and articulated robots in
2-D and 3-D environments. Experiments show that the hybrid
sampling strategy enables relatively small roadmaps to reliably
capture the connectivity of configuration spaces with difficult
narrow passages.

Index Terms— Robotics, motion planning, randomized algo-
rithm, random sampling, probabilistic roadmap planner.

I. I NTRODUCTION

During the past decade, probabilistic roadmap (PRM) plan-
ning [1], [2], [3], [4], [5], [6], [7], [8], [9], [10] has emerged as
a powerful framework for path planning of robots with many
degrees of freedom (dofs). The main idea of a classic PRM
planner [7] is to sample at random a robot’s configuration
space and connect the sampled points to construct aroadmap
graph that captures the connectivity of the free space, the
collision-free subset of the configuration space. Due to its
efficiency and simplicity, PRM planners have found many ap-
plications in addition to robotics, including virtual prototyping
and computational biology (see,e.g., [11], [12], [13], [14],
[15]).

Despite the success of PRM planners, path planning for
many-dof robots is difficult. Several instances of the problem
have been proven to be PSPACE-hard [16] or even undecidable
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Fig. 1. An example of sample points generated with the bridge test. In this
and all later figures, shaded regions indicate obstacles. Black dots indicate
sample points.

[17], [18]. It is unlikely that sampling, the key idea behind
PRM planners, can overcome such difficulty entirely. Indeed,
narrow passages in the configuration space pose significant
difficulty for PRM planners. Intuitively, narrow passages are
small regions whose removal changes the connectivity of the
configuration space. We can also give formal characterizations
[19], [6] using the notion ofvisibility sets, where two points
in the configuration space are considered visible to each other
if they can be connected by a collision-free straight-line path.
To capture the connectivity of the configuration space well,
PRM planners must sample in the narrow passages. This is
difficult, because narrow passages have small volumes, and
the probability of sampling from small sets is low.

In this paper, we propose a hybrid sampling strategy in
the PRM framework in order to find paths through narrow
passages efficiently. Our goal is to build a good roadmap
by sampling a small number of well-placed points from the
configuration space. We pay a slightly higher computational
cost in sampling than simpler alternatives, but our roadmap
requires much fewer points to capture the connectivity of the
configuration space, thus saving a lot of time in checking
collision-free connections between the sampled points.

A key ingredient of our new strategy is thebridge test, a
specialized sampling strategy for narrow passages. It rejects
a large fraction of samples in unimportant parts of a config-
uration space, thus resulting in increased sample density in
narrow passages. In a bridge test, we check for collision at
three sampled points: the two endpoints and the midpoint of
a short line segments. If the two endpoints are in collision
and the midpoint is collision-free, the midpoint is accepted
as a new node in the roadmap graph being constructed. We
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call this a bridge test, because the line segments resembles
a bridge: the endpoints ofs, located inside obstacles, act as
piers, and the midpoint hovers over the free space.

The bridge test saves computation time by filtering out those
sampled points that are unlikely to contribute to an improved
roadmap. For a point inside a narrow passage, buildingshort
bridges through it is easy, due to the geometry of narrow
passages; for a point in the middle of wide-open free space,
doing so is much more difficult. By favoring short bridges,
we filter out many sampled points in wide-open free space,
as most of these points do not improve the connectivity of
the roadmap. At the same time, points inside narrow passages
easily pass the bridge test and are retained in the roadmap to
improve its connectivity. See Fig. 1.

The bridge test uses only collision checking as a primitive
operation and does not require complex geometric processing
in the configuration space. It is simple to implement and can
be easily applied to high-dimensional configuration spaces.

Since the bridge test focuses almost solely on the narrow
passages, it may fail to sample an adequate number of points
to cover theentire free space [19]. Interestingly, the difficulty
encountered by the bridge test can be overcome by uniform
sampling, which tends to place many samples in wide-open
free space. The strengths of the bridge test and the uniform
sampler complement each other naturally, and the two sam-
pling strategies are combined to produce a hybrid sampling
strategy to achieve better results.

In the following, Section II reviews related work. Section III
gives an overview of our planner. Sections IV and V present
the bridge test and show how to combine it with uniform
sampling to construct a hybrid sampling strategy. Section VI
discusses practical implementation issues. Section VII reports
experiments with our planner on rigid and articulated robots in
2-D and 3-D environments. Section VIII discusses the limita-
tion of the bridge test and possible generalization. Section IX
summarizes the main results.

II. RELATED WORK

The difficulty posed by narrow passages and its importance
were noted in early work on PRM planners (see,e.g., [7]) and
were later articulated in [20]. Several sophisticated sampling
strategies can alleviate this difficulty, but a satisfactory answer
remains elusive.

One possibility is to sample more densely near obstacle
boundaries [1], [3], [21] because points in narrow passages
lie close to obstacles. The Gaussian sampler [3] is a simple,
efficient algorithm that uses this idea. However, in some cases,
many points near obstacle boundaries lie far away from narrow
passages and do not help in improving the connectivity of
roadmaps. So despite the improvement, sampling near obstacle
boundaries may waste many samples in uninteresting regions
(see Fig. 3). In some special cases, the Gaussian sampler can
be extended to reduce the number of wasted samples by paying
a higher computational cost.

Other approaches to narrow passage sampling include dilat-
ing the free space [20] and retracting to the medial axis of free
space [22]. Both require geometric operations that are expen-
sive to implement in high-dimensional configuration spaces.

To reduce the computational cost, various approximation tech-
niques have been proposed [5], [23], [24]. The visibility-based
PRM [10] is related to the narrow passage problem. It tries
to reduce the number of unnecessary milestones by checking
their visibility.

Some of the above approaches and others are compared
through systematic experiments [25], [26]. The comparison in-
dicates that the various approaches all have their own strengths
for different situations. Thus it is natural to combine them [27],
[28], [29]. This idea, which we call hybrid sampling, is also
used in the work here.

III. OVERVIEW OF THE PLANNER

The configuration of a robot withn dofs can be represented
as a point in ann-dimensional spaceC, called theconfigura-
tion space. A configurationq is free, if the robot placed atq
does not collide with the obstacles or with itself. We define
the free spaceF to be the set of all free configurations inC,
and define the obstacle spaceB to be the complement ofF :
B = C\F .

A classic multi-query PRM planner proceeds in two stages.
In the first stage, it randomly samples inF a set of points,
calledmilestones. It uses the milestones as nodes to construct
a graphG, called a roadmap, by adding an edge between
every pair of milestones that can be connected via a simple
collision-free path, typically, a straight-line segment. After
the roadmap has been constructed, multiple queries can be
answered quickly in the second stage. Each query consists of
an initial configurations and a goal configurationt, and asks
for a collision-free path connectings and t. The planner first
finds two milestoness′ and t′ in the roadmapG such thats
(t, respectively) ands′ (t′, respectively) can be connected by
a collision-free path inC, and then searches for a path inG
betweens′ and t′.

In this paper, we follow this general framework, but address
mainly the first stage, roadmap construction. Methods for the
second stage are well-understood [7], [25].

An important property of a good roadmapG is coverage:
for any given (initial or goal) configurationq ∈ F , there is
a collision-free path betweenq and a milestone inG with
high probability. This implies that the milestones inG collec-
tively “covers” a significant portion ofF . Another important
property isconnectivity. The roadmapG should capture the
connectivity of the underlying free spaceF that it represents:
any two milestones in the same connected component ofF
should also be connected by a path inG. Otherwise the planner
would give many false negative answers.

A main difficulty in constructing good roadmaps results
from narrow passages inF . Narrow passages are small regions
whose removal changes the connectivity ofF : they may
change the way different regions are connected, or even change
the number of connected components. To capture the connec-
tivity of F in the roadmap, it is essential to sample milestones
in narrow passages. This, however, is difficult because of
their small volumes. Any volume-based sampling distribution
is likely to fail. In particular, the uniform distribution does
not work well. Furthermore, when dealing with many-dof
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robots, we do not have an explicit representation ofF and
cannot locate narrow passages directly by processing the
global geometry ofF .

Our goal is to build a good roadmap by sampling a small
number of well-placed milestones. To obtain milestones in nar-
row passages, we pay a higher cost for sampling a milestone
than simpler methods such as uniform sampling. However,
the intuition is that our roadmap would require much fewer
milestones to coverF and capture its connectivity, thus saving
a lot of time in checking collision-free connections between
the milestones.

More precisely, the running timeT of roadmap construction
is given by

T = Nmil · Tmil + Ncon · Tcon,

where

Tmil: the average cost of sampling a milestone,
Nmil: the number of milestones in the roadmap,
Tcon: the average cost of checking collision-free

connections between two milestones,
Ncon: the number of calls to check collision-free

connections between two milestones.

To illustrate the potential benefits of our approach, let us look
at a numerical example. Assume thatTmil = t andTcon = 10t,
as the cost of checking collision-free connections between two
milestones is much higher than that of sampling a milestone.
Assume also thatNmil = n, and every milestone is checked for
connection with two nearby milestones,i.e., Ncon = 2·Nmil =
2n. The total running time is thenT = n · t+2n ·10t = 21nt.
Now suppose that we pay a higher cost in sampling, but are
able to reduce the number of milestones needed. For example,
Tmil = 100t, and Nmil = n/10. Then we have the total
running timeT = n/10 · 100t + 2n/10 · 10t = 12nt, which is
roughly half of the original running time. By paying a higher
costTmil, we reduce the number of milestones needed in the
roadmap and thus reduceNcon. SinceTcon is usually much
larger thanTmil, the cost of checking connections between
milestones dominates, and reducingNcon results in reducing
the total running time. Although the numerical values in
this example are chosen for the purpose of illustration and
should not be taken literally, the intuition behind holds more
generally and is supported by the experiments (see Section
VII). However, we must be careful in balancing the cost
and the benefit. If the increase inTmil is much higher than
the decrease inNcon, the benefit of our approach will be
diminished. ThereforeTmil should be kept small, if possible.

The sampling distribution that we use for our planner is
a weighted mixture ofπB, the distribution generated by the
bridge test, andπU, the uniform distribution. We describe how
to constructπB and combine the two distributions in the next
two sections.

After sampling a new milestoneq, our planner tries to
connect q to nearby milestones via collision-free straight-
line paths. Like other PRM variants, our planner tries to
connect two milestones only if they lie in different connected
components of the roadmapG and the distance between them

Fig. 2. Building short bridges is much easier in narrow passages (left) than
in wide-open free space (right).

is smaller than a threshold, according to a suitable distance
metric. However, when the size ofG is large, there may still
be too many milestones whose distances toq are less than
the threshold. So the planner tries to connectq with only the
K nearest such milestones, whereK is a fixed constant. The
intuition is that if the planner cannot establish connections
from q to theK nearest milestones, most likely it will not be
able to establish connections to other milestones further away.

IV. T HE BRIDGE TEST

A. The Algorithm

The bridge test is designed to boost the sample density in
narrow passages using only simple tests of local geometry.
It is based on the following observation. A narrow passage
in an n-dimensional configuration space has at least one
restricted directionv such that small perturbations of the
robot’s configuration alongv result in collision of the robot
with obstacles. Therefore, for a collision-free configurationq
in a narrow passage, it is easy to sample at random a short
line segments throughq such that the endpoints ofs lie in the
obstacles inC (Fig. 2a). The line segments is called abridge,
because it resembles a bridge across the narrow passage. We
say that a pointq ∈ F passes the bridge test, if we succeed
in obtaining such a segments throughq. For convenience, we
also say thats passes the bridge test. Clearly buildingshort
bridges is much easier in narrow passages than in wide-open
free space. By favoring shorter bridges over longer ones, we
increase the chance of accepting points in narrow passages
(Fig. 2).

To sample a new milestone using the bridge test, we pick
a line segments from C by choosing its endpoints at random
and test whethers passes the bridge test. If so, we add the
midpoint of s to the roadmapG as a new milestone. We call
this algorithm Randomized Bridge Builder (RBB). The details
of RBB are shown below.

Algorithm 1 Randomized Bridge Builder (RBB).

1. repeat
2. Pick a pointx from C uniformly at random.
3. if CLEARANCE(x) returnsFALSE then
4. Pick a pointx′ in the neighborhood ofx according

to a suitable probability densityλx.
5. if CLEARANCE(x′) returnsFALSE then
6. Setq to be the midpoint of line segmentxx′.
7. if CLEARANCE(q) returnsTRUE then
8. Insertq into G as a new milestone.
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In lines 3, 5, and 7, RBB calls the functionCLEARANCE to
test whether a point inC is collision-free.

To perform the bridge test, RBB uses only a single ge-
ometric primitive,CLEARANCE, which can be implemented
efficiently using a collision detection algorithm (see,e.g., [30],
[31]). The bridge test is purely local and does not require
processing the global geometry ofC.

RBB pays a higher cost to sample a milestone than sim-
pler alternatives such as uniform sampling, because of two
reasons. First, it takes three calls toCLEARANCE for RBB
to accept a milestone, one for the milestone itself and two
for the endpoints of the bridge passing through the milestone.
Second, it rejects a large fraction of free configurations that
are normally accepted by other sampling strategies. However,
RBB increases the sample density in narrow passages, which
are critical in capturing the connectivity of the free space. For
configuration spaces with difficult narrow passages, it usually
leads to smaller roadmaps and saves lots of computation time
in checking collision-free connections between milestones, an
operation that is usually more expensive than the additional
cost that RBB spends in sampling milestones.

B. Choosing the Probability Densityλx

The density functionλx (Algorithm 1, line 4) determines
how frequently a bridge of particular length is chosen for a
test at the pointx. Short bridges are preferred over longer
ones in order to increase the probability of sampling in narrow
passages. We chooseλx to be a radially symmetric Gaussian
with its center atx and a small standard deviationσ. To be
specific, letN(σ) denote the univariate Gaussian distribution
with mean 0 and standard deviationσ. We sample a value
randomly and independently for each dimension ofC accord-
ing to N(σ), shifted to center at the corresponding coordinate
of x. The density functionλx is then the product of these
independent univariate Gaussians. Other ways to construct
radially symmetric Gaussian are also possible. Finally the
parameterσ depends on the width of narrow passages that
we want to capture. The best value forσ is problem-specific,
and we discuss this issue further in Section VI-B.

C. Analysis of the Sampling Distribution

To calculate probability densityπB of the milestones created
by Algorithm 1, let us first defineX andX ′ to be two random
variables, representing respectively the two endpoints of a
bridge. The first endpointX is distributed uniformly over the
set of configuration-space obstaclesB. So the densityfX(x)
is non-zero if and only ifx lies in B. Assume, without loss
of generality, thatB has volume 1. ThenfX(x) is 1 if x ∈ B
and 0 otherwise. GivenX = x, we choose the other endpoint
X ′ = x′ according to the densityλx. The pointx′ is accepted
only if it lies in B. Let I be a binary function such that for
any point q ∈ C, I(q) = 1 if q ∈ B and 0 otherwise. The
conditional density ofX ′ given X is given by

fX′|X(x′ | x) = λx(x′)I(x′)/Zx,

Gaussian sampler RBB

Fig. 3. Milestones generated by the Gaussian sampler and RBB. The total
number of milestones in the two cases is the same. RBB generates fewer
milestones along the circular boundaries and many more in the narrow passage
connecting the two circular chambers.

whereZx =
∫
C λx(x′)I(x′) dx′ is a normalizing constant. To

calculateπB at a pointq ∈ F , we condition onX:

πB(q) =
∫

C
fX′|X(x′ | x)fX(x) dx. (1)

Note thatp is the midpoint of the line segmentxx′ and so
x′ = 2q − x. Substituting the expressions forfX , fX′|X , and
x′ into (1), we have

πB(q) =
∫

B
λx(2q − x)I(2q − x)/Zx dx. (2)

We have chosenλx to be a Gaussian with its center atx
and a small standard deviation. The densityλx is large ifx′ =
2q − x lies relatively close tox. Furthermore, the integrand
in (1) is non-zero only ifI(2q − x) = 1, i.e., x′ ∈ B. In the
neighborhood of a pointq inside a narrow passage, it is more
likely to find pairs of pointsx and x′ that satisfy these two
conditions, resulting in a larger value forπB at q.

D. Comparison with Sampling Near Obstacle Boundaries

RBB is related to the Gaussian sampler [3]. Both use one
simple geometric primitiveCLEARANCE to create favorable
distributions. RBB is slightly more expensive: it makes one
more call toCLEARANCE in each invocation than the Gaussian
sampler and rejects more samples. However, the nature of the
two sample distributions generated are quite different. RBB
increases the sample density in regions where short bridges can
be easily constructed; the Gaussian sampler increases the sam-
ple density near obstacle boundaries. See Fig. 3 for the differ-
ence between the two sample distributions. If milestones near
obstacle boundaries all improve the connectivity of roadmaps,
the Gaussian sampler is preferable, as it incurs lower cost per
invocation. On the other hand, obstacle boundaries may be
uninteresting if they are bounding wide-open regions ofF , as
samples near these boundaries do not contribute to improving
the connectivity of roadmaps. Therefore, RBB gains efficiency
by avoiding sampling near such boundaries. In this sense, RBB
and the Gaussian sampler are complementary.

V. COMBINING COMPLEMENTARY SAMPLING

DISTRIBUTIONS

We have seen that RBB helps in boosting the sample density
in the subsetP of F occupied by narrow passages. The density
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Fig. 4. The hybrid sampling distributionπ. The distributionsπB and πU

perform well onP andF\P, respectively. Combining them with suitable
weights leads to good performance over the entire sampling domainF .

πB is heavily biased towardsP. At the same time,πB penalizes
wide-open collision-free regions: few milestones are sampled
in F\P. This is undesirable, because a good roadmap must
cover the entire free space adequately.

Interestingly, we can make up the deficiency ofπB with the
uniform distributionπU, which samplesF with probability
proportional to the volumes of subsets inF . For πU, most
milestones are sampled inF\P, as it has a large volume.
The two distributions complement each other naturally:πU

provides good coverage ofF\P, andπB samples more densely
in P and thus improves the connectivity of the roadmap. They
are combined to produce a hybrid sampling distribution:

π = (1− w) · πB + w · πU, (3)

where w is a weight, with0 ≤ w ≤ 1. The choice ofw
depends on the difficulty of sampling in narrow passages and
the number of milestones needed to coverF .

One useful way of thinking about this hybrid distributionπ
is to divideF into two subsets, the set of narrow passages
P and its complementF\P. We use a different sampling
strategy tailored to each subset and combine them to achieve
good performance over the entire sampling domain. See Fig. 4
for an illustration. Note, however, that in our planner, the
combination of two sampling strategies is achieved through
weighting and not through explicit decomposition ofF .

The significance of hybrid sampling is not about putting to-
gether two sampling distributions, but rather about identifying
distributions complementary in their strengths and combining
them so that their individual strengths are preserved.

To implement the hybrid distribution, we can certainly
generate new random points fromπU, but we can get some
of these points “for free” by reusing the points rejected by
RBB. In line 3 of Algorithm 1, RBB rejects a configuration
x if CLEARANCE(x) returnsTRUE, i.e., x is collision-free.
However, such a configurationx is exactly what is generated
by πU. To reduce computation time, we can savex and use it
instead of generating a new one fromπU when needed.

VI. I MPLEMENTATION ISSUES

In this section, we describe some details for implementing
our planner on rigid and articulated robots.

A. Parameterizing the Configuration Space

Often, each dimension of the configuration space may have
a different effect on the overall motion of a robot. Consider, for

example, a planar articulated robot with a free base and three
links of lengthsl1, l2, andl3, respectively. The configuration of
this robot can be represented as(x, y, θ1, θ2, θ3), wherex and
y specify the position of the base, andθ1, θ2 andθ3 specify the
angles for the three joints in increasing order of their distance
to the base along the kinematic chain. Assume that the robot
is fully extended. Ifθ1 changes by an angleϕ, the tip of the
robot moves a distance of(l1 + l2 + l3)ϕ. If θ2 changes by the
same angleϕ, the tip moves by a distance of(l2 + l3)ϕ. We
must take this into account for our planner in two occasions.

First, when choosing the density functionλx in RBB, we
need a consistent measure of how restrictive the allowable
motion is in the narrow passages along each dimension of
the configuration spaceC. Our solution is to rescaleC. For
each configuration space coordinateqi, let di be the maximum
distance traveled by any point on the robot when the robot
moves between any two configurations that have identical
coordinates in all dimensions exceptqi [32]. We rescale the
range ofqi to [0, di]. This method of rescaling is quite general
and can be applied to any translational or rotational dof of a
robot. In our planar articulated robot example, for translational
dofs, the scaling factors are 1, and rescaling has no net effect.
For rotational dofs, we have, for example,d2 = (l2+l3)2π for
the joint angleθ2, and we can scale other joint angles similarly.
For rigid robots in 3-D, rotational dofs can be represented with
either Euler angles or quaternions. If Euler angles are used,
the scaling factor for each Euler angle is calculated exactly
the same way as that for the joint angle of articulated robots:
di = 2πLi, whereLi is the maximum distance of any point on
the robot to the axis of rotation for the corresponding Euler
angle qi. If quaternions are used, the calculation is slightly
more involved, but the principle is the same.

We need to consider this scaling issue again, when adding a
new milestoneq to the roadmap. The planner tries to connectq
with existing milestones within a certain distance. So we need
a suitably-defined distance metric onC. Ideally the metric has
the property that for any two free configurationsq andq′, the
greater the distance betweenq andq′ is, the more likely that
the robot encounters an obstacle when following a straight-line
path from q to q′. Again we have to rescaleC so that each
dimension ofC has a similar effect on the overall motion of the
robot. After rescaling, we can simply define the metric onC
to be the Euclidean distance between two configurations. This
scaling heuristic is often used in motion planning (see,e.g.,
[7]). Other heuristics can also be used. For instance, instead of
using the maximum distance traveled by any point on the robot
as a measure of the “distance” between two configurations, we
can use the volume swept out by the robot.

B. Parameters for the Sampling Distribution

Two parameters are needed to fix the hybrid sampling
distribution π. The first parameter fixes the density function
λx for RBB. As we have discussed earlier,λx is a product of
independent Gaussians, with a small standard deviationσ to
bias towards sampling short bridges. The parameterσ depends
on the width of narrow passages to be captured and may affect
the planner’s performance. In practice, we can estimate the
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(a) Query configurations and a path found. (b) Uniform sampling.

(c) RBB. (d) Hybrid sampling.

Fig. 5. A planar rigid-body robot maneuvering through a small opening
between two large chambers.

value of σ by analyzing the geometry of the robot and the
obstacles in the environment. For example, if the smallest
passage in the workspace has widthW and a rigid robot,
which translates and rotates, has maximum radiusR, thenσ
can be set to be proportional toW/R.

The second parameter is the weight for combiningπB and
πU. For our experiments, we assume no prior knowledge of
the environment. We do not bias towards eitherπB or πU and
use a relative weight of 1:1.

The best parameters settings are clearly problem-dependent,
and it is difficult to choose them in advance. A promising
approach is to use a set of RBBs with differentσ values
and adjust the weight for each RBB adaptively through on-
line learning [28]. This way, the best parameter values can be
identified automatically in an adaptive way.

VII. E XPERIMENTS

We implemented two versions of our planner, one version
in Java for robots in 2-D environments and one version in
C++ for robots in 3-D environments. To examine the planner’s
performance, we hand-crafted several difficult environments
and tested our implementations extensively. The 2-D test
environments are described below:

• Fig. 5a: We have a rigid-body robot, and the query
asks the robot to go from one large empty chamber to
another through a small opening near the lower middle
of the figure. This is a case where we expect the hybrid
sampling strategy to work well, because the bridge test
eliminates many sampled configurations that lie in the
middle of wide-open space and are unlikely to improve

the coverage or connectivity of the roadmap. Figures 5b–
5d show the roadmaps generated by uniform sampling,
pure RBB, and hybrid sampling, respectively. Each sam-
pling strategy uses the same number of milestones. The
roadmap constructed by uniform sampling covers the
free space well, but wastes many milestones in the two
chambers and does not put any milestone near the small
opening. Note that in these figures, the milestones are pro-
jected from the 3-dimensional configuration space to the
2-dimensional workspace for drawing. Two milestones
appear close to each other in the figures may be far away
from each other in the configuration space because of
different orientations, and therefore there may not be a
collision-free straight-line path that connects them. Pure
RBB puts a large number of milestones near places where
it can successfully build “bridges”, including the small
opening between chambers. This enables it to capture the
connectivity of the free space well. However, the roadmap
constructed by RBB has poor coverage: very few mile-
stones are in the two chambers to cover the free space.
This does not cause a big problem here, because the two
chambers in this example are convex, and every point
inside a chamber can cover a large portion of the chamber.
However, in general, more milestones are needed, if the
chambers have more complex geometry. Hybrid sampling
combines the strengths of uniform sampling and RBB to
build a roadmap that has good coverage and captures the
connectivity of the free space well.

• Fig. 6: According to our analysis in Section III, sampling
with the bridge test works well, only if the resulting
roadmap contains much fewer milestones than those
generated by other sampling strategies. We constructed
this example so that the bridge test does not have such
an advantage. This planar environment for a point robot
contains a long path that has almost equal width every-
where. So almost every sampled configuration passes the
bridge test. The roadmap constructed with the bridge test
would have roughly the same size as that constructed by
uniform sampling or Gaussian sampling.

• Fig. 7: A rigid-segment robot enters a narrow corridor,
reorients in a small circular room, and exits another
narrow corridor. This environment is an example of con-
nected narrow passages in different orientations. When
the robot is inside one of the two corridors, it can only
translate along the direction of the corridor. Movements
in the orthogonal directions are very restricted: it cannot
translate sidewise or rotate. When the robot is inside
the small circular room in the middle, the rotational
movement is unrestricted, but the translational movement
is very restricted, as the diameter of the room is only
slightly more than the length of the robot. In the 3-
dimensional configuration space, the two corridors and
the round room in the middle map to three connected
narrow passages in different orientations.

• Fig. 8: In this example, we have a T-shaped robot with
two parts, a “torso” and a “shoulder”, connected by a
joint. The planar environment contains a long and narrow
corridor with two turns.
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Fig. 6. A partial roadmap built by RBB for
a point robot in the plane.

Fig. 7. A path for a rigid segment translating and
rotating in a narrow region.

Fig. 8. A path for a T-shaped robot moving
through a long, narrow corridor.

Fig. 9. A 7-dof articulated robot with a fixed base. The left figure shows
the query configurations. The right figure shows those milestones generated
by RBB.

Fig. 10. An 8-dof articulated robot with a mobile base. The left figure shows
the query configurations. The right figure shows those milestones generated
by RBB.

• Fig. 9: This environment contains a seven-dof articulated
robot with a fixed base. At the initial configuration, the
robot is trapped inside a narrow opening. Joint angles near
the robot’s base have very limited range of motion. Joint
angles near the robot’s tip can move relatively freely. As
the robot performs difficult maneuvers to pull out of the
narrow opening, an increasing number of joints have their
motion restricted, until the robot pulls out completely
and all the joints can move freely. The robot then has
to insert itself into the other narrow opening to reach the
goal configuration. The sequence of events are similar,
but occur in reverse order.

• Fig. 10: This environment contains a relatively short
corridor with two turns. Each milestone in the corridor
covers only a small portion of the free space. The robot
is an articulated robot with six links and a mobile base,
eight dofs in total.

We tested these environments with the Java implementation
of our planner. For each test environment, we rescaled the
configuration spaceC to [0, d1] × [0, d2] × · · ·, as described
in Section VI. Since all the environments are bounded, we
applied an additional uniform scaling1/d, whered = maxi di,
so thatC fits within a unit hyper-cube, in order to simplify the
implementation.

The relative weight for combining the two componentsπU

andπB of the hybrid sampling distribution was 1:1,i.e., equal

weights for the two components. We also systematically varied
the standard deviationσ of the Gaussian for the bridge test
between1/128 and1/16 to choose the best setting. It turned
out thatσ = 1/32 worked well in all the experiments.

To add a new milestoneq to the roadmap, the planner tries
to connectq with an existing milestoneq′, only if (i) q and
q′ are in different connected components, (ii) the distance
betweenq and q′ is smaller than a thresholdD, and (iii) q′

is a K-nearest neighbor ofq. This method of adding nodes,
called nearest-K, has been used in earlier work for comparing
sampling strategies [25], [26] and shown robust performance
in extensive experiments. Based on earlier experimental results
(see,e.g., [25], [26]) and our own experiences, we have chosen
D to be 0.25 andK to be 20. We have intentionally chosen
slightly lower values so that our planner does not get unfair
advantages.

We also ran the same experiments with two other sampling
strategies, the uniform sampler and pure RBB (without mixing
with uniform sampling). The uniform sampler is used mainly
as a way to calibrate the difficulty of the queries, and RBB is
used to examine the benefit of hybrid sampling. For RBB, the
standard deviationσ of the Gaussian is set to1/8. Without the
help from the uniform sampler, we cannot makeσ too small.
Otherwise, it would reduce the coverage of the roadmap and
adversely affect the performance of the pure RBB.

For comparison, we also experimented with the Gaussian
sampler and visibility-based PRM (Vis-PRM), with optimized
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TABLE I

THE PERFORMANCE OF VARIOUS SAMPLING STRATEGIES.

Env. dofs Sampler Nmil Time (sec.)
(Fig.) avg. std.

5 3 Hybrid 302 3.9 2.2
RBB 4,555 30.0 48.1
Uniform 25,607 382.4 350.6
Visibility 83 120.3 96.5
Gaussian 1,165 5.6 3.2

7 3 Hybrid 900 7.4 2.8
RBB 5,956 34.7 25.9
Uniform 47,064 995.0 234.7
Visibility 108 235.9 106.8
Gaussian 2,276 8.4 3.9

8 4 Hybrid 916 7.1 2.9
RBB 3,422 17.1 6.3
Uniform 23,152 354.0 204.3
Visibility 209 148.8 45.3
Gaussian 1,976 9.9 3.8

9 7 Hybrid 1,307 111.3 42.1
RBB 2,915 231.1 85.5
Uniform 22,465 1012.3 380.6
Visibility 826 790.6 288.5
Gaussian 1,619 146.5 54.3

10 8 Hybrid 1,004 41.4 13.3
RBB 4,155 98.2 26.2
Uniform 35,822 1803.3 783.2
Visibility 620 698.1 173.8
Gaussian 3,255 92.2 27.6

6 2 Hybrid 1,317 25.6 6.3
RBB 1,390 26.4 5.5
Uniform 1,358 23.4 5.4
Visibility 206 42.6 11.5
Gaussian 1,291 23.5 4.3

parameter settings. In particular, for the Gaussian sampler,
we varied the standard deviation of the Gaussian, using five
different settings between1/512 and1/16, and chose the best
one for each environment.

We ran each sampling strategy 30 times independently for
each test environment, and terminated the planner as soon as
a path was found between query configurations. The average
number of milestones in the final roadmap,Nmil, and the
average running time are shown in Table I. The statistics were
gathered from the Java implementation of our planner on a
Linux workstation with a 2.8 GHz Pentium 4 processor.

Table I shows consistent results in these tests with different
robots and environments. Hybrid sampling usually outper-
forms both the uniform sampler and pure RBB. Its roadmap
is much smaller (see column 4), and the total running time is
also shorter. The reduction in running time is not proportional
to the reduction in roadmap size, because hybrid sampling
pays a higher cost to obtain a milestone than the simpler
uniform sampling. However, the smaller roadmap size requires
much fewer tests to check collision-free connections between
the milestones in the roadmap (see Table II), which are the
dominant factor in the total running time. So hybrid sampling
is able to achieve good overall performance. This basically
confirms our intuition on the benefit of using the bridge test,
as described in Section III.

For hybrid sampling, the standard deviationσ used for
the bridge test does affect the performance, sometimes by as
much as 50%. Nevertheless, hybrid sampling performs better
than uniform sampling and RBB in all the environments with

TABLE II

A BREAKDOWN OF THE TOTAL RUNNING TIME INTO COMPONENTS

DEFINED IN SECTION III FOR THE EXAMPLE IN FIG. 10.Tmil AND Tcon

ARE MEASURED IN THE NUMBER OF CALLS TOCLEARANCE.

Sampler Nmil Tmil Ncon Tcon Time (sec.)
Hybrid 1,004 113.5 7,180 43.3 41.4
RBB 4,155 33.4 11,127 59.0 98.2
Uniform 35,822 1.8 50,315 66.2 1,803.3
Visibility 620 10825.2 4,955 93.9 698.1
Gaussian 3,255 18.5 15,699 46.4 92.2

narrow passages, as long as a reasonable, not necessarily the
best, value forσ is chosen. This shows the benefit of hybrid
sampling even if we do not know the best value forσ.

In most of these experiments, RBB alone without uniform
sampling does not perform as well as hybrid sampling, because
these environments contain both narrow passages and wide-
open free space. Without uniform sampling, we have to setσ
for the bridge test to a relatively large value in order to improve
the coverage of the roadmap. As a result, the ability of the
bridge test to identify narrow passages is reduced, leading to
worse performance.

For Vis-PRM and the Gaussian sampler, as well as our
hybrid sampling strategy, they all try to reduce the size of the
roadmap and improve computational efficiency by filtering out
milestones that are not useful. Yet they differ in the filtering
cost (see Table II, column 3 for an example). To certify a
useful milestone, Vis-PRM must perform several tests to check
collision-free connection between milestones, a very expensive
operation. The cost of filtering for both Gaussian sampling and
hybrid sampling is much cheaper. Gaussian sampling takes two
calls to CLEARANCE to certify a useful milestone, and RBB
takes three calls. As a result, although Vis-PRM produces very
small roadmaps (see Table II, column 2) and clearly improves
over uniform sampling, its performance is weaker than the
Gaussian sampler and the hybrid sampling strategy using RBB.
This is expected in light of our discussion in Section III, and is
why we suggest thatTmil must remain small for the filtering to
be effective. Gaussian sampling assumes that useful milestones
lie close to obstacle boundaries. When this assumption holds,
it has an advantage over hybrid sampling (see the example
in Fig. 6). When the assumption fails, it may be substantially
slower than hybrid sampling, especially for robots with many
dofs, as the example in Fig. 10 shows.

The first five environments in Table I share a common
characteristic: they all contain narrow passages connecting
regions that allow relative unrestricted movement. This gives
an advantage to sampling strategies designed specifically for
narrow passages, such as the hybrid sampling strategy or
RBB. The environment in Fig. 6 is different. It contains
a long path that has almost equal width everywhere. The
resulting roadmaps all have roughly the same size. So the
uniform sampler, which has low cost for sampling a milestone,
performs better. However, even in this case, hybrid sampling
performs only 9% worse than uniform sampling.

We also tested the C++ implementation of our planner
in 3-D environments. For each environment, we manually
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Fig. 11. A rigid body translating and rotating freely in a 3-D environment.
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Fig. 12. A 6-dof robot manipulator.

specified several queries so that solving these queries indicates
that a roadmap captures the connectivity of the free space
well. Again each test was repeated 30 times independently.
For each test environment below, we show a graph that plots
the percentage of queries that a planner can answer correctly
as the running time increases.

• Fig. 11: This test uses a rigid-body robot translating and
rotating freely in a 3-D environment. The space is divided
into eight chambers by walls with holes. We specified
query configurations in all the chambers and ran the
planners until all possible connections are established
among the query configurations. The configuration space
here consists of many narrow passages, with a moderate
amount of free space that allows unrestricted movement.
Pure RBB turns out to have the best performance, be-
cause it focuses on sampling in narrow passages. The
performance of the hybrid sampling strategy is close.

• Fig. 12: Here we have a six-dof robot manipulator
arm. Horizontal and vertical bars are set up around the
robot to make its movement difficult. We specified 12
queries. Each query requires the robot to move its end-
effector from one opening between the bars to another.
To answer a query, the robot must pull its end-effector
out of a narrow opening, move in relatively open free
space, and reinsert the end-effector into another narrow
opening. In this test, the hybrid sampling strategy, RBB,
and the Gaussian sampler have similar performance, all
significantly better than uniform sampling.

VIII. D ISCUSSION

Compared with the idea of sampling near obstacle bound-
aries, the bridge test gains efficiency by filtering out those
samples near uninteresting obstacle boundaries, but it is not
perfect. Some uninteresting samples near corners can pass
the bridge test, because near the tip of a corner, it is easy
to build short bridges. Fig. 5c shows that RBB generated a
number of milestones near the corners ofF , and many of these
milestones may be unhelpful. The bridge test generates false
positives in this case, because it is a test oflocal geometry.
As Fig. 13 shows, if we only have information within a
small neighborhood, we cannot tell the difference between a
narrow passage and a narrow dead-end. Despite this problem,
our experiments show that the benefits gained by sampling
in narrow passages usually outweigh the computation time
wasted in sampling near corners (see Section VII).

We can try to reduce the false positives near corners by tak-
ing additional samples. For example, theorthogonal testpicks
at random an additional segments′ through the configuration
q such that the segments′ is orthogonal to the bridges. We
acceptq as a new milestone, if the endpoints ofs′ are both
in collision or both free, in addition to the normal conditions
on s. This helps to reduce the false positives, because such
samples often have one endpoint in collision and one endpoint
free. However, the orthogonal test is more expensive: it takes
five calls toCLEARANCE per test in the worst case, while the
original bridge test takes only three.

What is in common among the orthogonal test, the bridge
test, and the Gaussian sampler is that they all try to reconstruct
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Fig. 13. A narrow passage and a narrow dead-end. Within the small
neighborhood marked by the dashed circles, there is not enough information
to differentiate these two cases.

the local geometry of the configuration space by taking a small
number of samples. We can think of other tests based on local
sampling as well. The more samples we take, the more likely
that we can reconstruct the geometry accurately, at least in
principle; at the same time, we have to pay a higher cost
for sampling. In the extreme case, we can also check the
collision-free connection between two sampled points, as Vis-
PRM does. This yields very accurate information about the
connectivity of the local free space, but it is very expensive.
Our experiments indicate that the filtering cost should remain
low in order for it to be effective.

IX. CONCLUSION AND FUTURE WORK

We have presented a hybrid sampling strategy to address the
narrow passage problem for PRM planning. A key ingredient
of the new sampling strategy is the bridge test, which boosts
the sample density in narrow passages. The bridge test can be
viewed as a filter that rejects the milestones that are unlikely
to improve the connectivity of a roadmap and thus saves
the computation time by avoiding the expensive tests needed
to connect these milestones in the roadmap. The bridge test
is purely local and can be implemented efficiently in high-
dimensional configuration spaces. By combining the bridge
test with uniform sampling, we construct a hybrid sampling
strategy that generates small roadmaps that cover the free
space well and have good connectivity. Our experiments on
rigid and articulated robots in 2-D and 3-D environments show
that our planner was able to reliably capture the connectivity
of free spaces with difficult narrow passages.

There are two main issues that we are interested in exploring
further in the future.

First, in our current hybrid sampling strategy, the weight
for combining the bridge test and the uniform sampler is set
manually, and the best choice is clearly problem dependent. A
promising approach is to adjust the weights adaptively through
on-line learning. It would also be interesting exploit the
possibly complementary strengths of RBB and the Gausssian
sampler and combine them as well as the uniform sampler in
a hybrid sampling framework. Work is currently underway in
this direction [28].

Second, viewing the bridge test as a filter allows us
to combine it with other sampling strategies. For example,
MAPRM [22] samples points on the medial axis ofF . Since
the milestones on the medial axis of the wide-open regions
of F tend to have good coverage ofF , removing some of
them does not affect the connectivity of the roadmap. On
the other hand, milestones on the medial axis of narrow
passages are more critical, as they have much more limited

visibility. Removing any of them may disconnect the roadmap.
Therefore, after generating milestones using MAPRM, we can
apply the bridge test to the milestones. Each milestone that
passes the bridge test is retained; each one that fails is retained
with a certain probability. This way, we can get a smaller
roadmap without affecting its quality.
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