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Abstract— Probabilistic roadmap (PRM) planners have been I
successful in path planning of robots with many degrees of
freedom, but sampling narrow passages in a robot's configuration
space remains a challenge for PRM planners. This paper presents
a hybrid sampling strategy in the PRM framework for finding
paths through narrow passages. A key ingredient of the new ¥ )
strategy is the bridge test which reduces sample density in ! !
many unimportant parts of a configuration space, resulting in :
increased sample density in narrow passages. The bridge test ¥ y T
can be implemented efficiently in high-dimensional configuration
spaces using only simple tests of local geometry. The strengths .
of the bridge test and uniform sampling complement each other Y ';:,
naturally. The two sampling strategies are combined to construct
the hybrid sampling strategy for our planner. We implemented ) ) ) )
the planner and tested it on rigid and articulated robots in Fi9: 1. - An example of sample points generated with the bridge test. In this
2-D and 3-D environments. Experiments show that the hybrid and a}ll later figures, shaded regions indicate obstacles. Black dots indicate
sampling strategy enables relatively small roadmaps to reliably sample points.
capture the connectivity of configuration spaces with difficult
narrow passages.
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rithm, random sampling, probabilistic roadmap planner. [17], [18]. It is unlikely that sampling, the key idea behind

PRM planners, can overcome such difficulty entirely. Indeed,
narrow passages in the configuration space pose significant
|. INTRODUCTION difficulty for PRM planners. Intuitively, narrow passages are
During the past decade, probabilistic roadmap (PRM) plafmMall regions whose removal changes the connectivity of the
ning [1], [2], [3], [4], [5], [6], [7]. [8], [9], [10] has emerged as configuration space. We can also give formal characterizations
a powerful framework for path planning of robots with many19], [6] using the notion ofisibility sets where two points
degrees of freedom (dofs). The main idea of a classic PR the configuration space are considered visible to each other
planner [7] is to sample at random a robot's configuratidﬁthey can be connected by a collision-free straight-line path.
space and connect the Samp|ed points to Constr[mmdn]ap To Capture the ConneCtiVity of the Configuration Space We”,
graph that captures the connectivity of the free space, tRRM planners must sample in the narrow passages. This is
collision-free subset of the configuration space. Due to igfficult, because narrow passages have small volumes, and
efficiency and simplicity, PRM planners have found many aphe probability of sampling from small sets is low.
plications in addition to robotics, including virtual prototyping In this paper, we propose a hybrid sampling strategy in
and computational biology (see,g, [11], [12], [13], [14], the PRM framework in order to find paths through narrow
[15]). passages efficiently. Our goal is to build a good roadmap
Despite the success of PRM planners, path planning floy sampling a small number of well-placed points from the
many-dof robots is difficult. Several instances of the problegonfiguration space. We pay a slightly higher computational
have been proven to be PSPACE-hard [16] or even undecidabdst in sampling than simpler alternatives, but our roadmap

requires much fewer points to capture the connectivity of the
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call this a bridge test, because the line segmendsembles To reduce the computational cost, various approximation tech-
a bridge: the endpoints of, located inside obstacles, act asiques have been proposed [5], [23], [24]. The visibility-based
piers, and the midpoint hovers over the free space. PRM [10] is related to the narrow passage problem. It tries
The bridge test saves computation time by filtering out those reduce the number of unnecessary milestones by checking
sampled points that are unlikely to contribute to an improveteir visibility.
roadmap. For a point inside a narrow passage, buildmuyt Some of the above approaches and others are compared
bridges through it is easy, due to the geometry of narrarough systematic experiments [25], [26]. The comparison in-
passages; for a point in the middle of wide-open free spackcates that the various approaches all have their own strengths
doing so is much more difficult. By favoring short bridgesfor different situations. Thus it is natural to combine them [27],
we filter out many sampled points in wide-open free spad@8], [29]. This idea, which we call hybrid sampling, is also
as most of these points do not improve the connectivity aked in the work here.
the roadmap. At the same time, points inside narrow passages
easily pass the bridge test and are retained in the roadmap to
improve its connectivity. See Fig. 1.
The bridge test uses only collision checking as a primitive The configuration of a robot with dofs can be represented
operation and does not require complex geometric processigya point in am-dimensional spac€, called theconfigura-
in the configuration space. It is simple to implement and cdion space A configurationg is free, if the robot placed ay
be easily applied to high-dimensional configuration spacesdoes not collide with the obstacles or with itself. We define
Since the bridge test focuses almost solely on the narrdhe free spacé to be the set of all free configurations h
passages, it may fail to sample an adequate number of poiaitsl define the obstacle spabBeto be the complement aof:
to cover theentire free space [19]. Interestingly, the difficulty B = C\F.
encountered by the bridge test can be overcome by uniformA classic multi-query PRM planner proceeds in two stages.
sampling, which tends to place many samples in wide-opém the first stage, it randomly samples ji a set of points,
free space. The strengths of the bridge test and the unifoemiled milestoneslt uses the milestones as nodes to construct
sampler complement each other naturally, and the two samgraphG, called aroadmap by adding an edge between
pling strategies are combined to produce a hybrid sampliegery pair of milestones that can be connected via a simple
strategy to achieve better results. collision-free path, typically, a straight-line segment. After
In the following, Section Il reviews related work. Section Ilithe roadmap has been constructed, multiple queries can be
gives an overview of our planner. Sections IV and V preseanswered quickly in the second stage. Each query consists of
the bridge test and show how to combine it with unifornan initial configurations and a goal configurationy and asks
sampling to construct a hybrid sampling strategy. Section ¥or a collision-free path connectingandt¢. The planner first
discusses practical implementation issues. Section VIl repdiiteds two milestones’ andt’ in the roadmap= such thats
experiments with our planner on rigid and articulated robots {h, respectively) and’ (¢', respectively) can be connected by
2-D and 3-D environments. Section VIII discusses the limita collision-free path irC, and then searches for a pathéh
tion of the bridge test and possible generalization. Section bétweens’ andt'.

IIl. OVERVIEW OF THE PLANNER

summarizes the main results. In this paper, we follow this general framework, but address
mainly the first stage, roadmap construction. Methods for the
Il. RELATED WORK second stage are well-understood [7], [25].

The difficulty posed by narrow passages and its importanceAn important property of a good roadmap is coverage
were noted in early work on PRM planners (seq, [7]) and for any given (initial or goal) configuratiop € F, there is
were later articulated in [20]. Several sophisticated sampli@gcollision-free path betweeq and a milestone i with
strategies can alleviate this difficulty, but a satisfactory answieigh probability. This implies that the milestones@hcollec-
remains elusive. tively “covers” a significant portion ofF. Another important

One possibility is to sample more densely near obstagieoperty isconnectivity The roadmap& should capture the
boundaries [1], [3], [21] because points in narrow passagesnnectivity of the underlying free spadethat it represents:
lie close to obstacles. The Gaussian sampler [3] is a simpéay two milestones in the same connected componerf of
efficient algorithm that uses this idea. However, in some casebpuld also be connected by a patlinOtherwise the planner
many points near obstacle boundaries lie far away from narrevould give many false negative answers.
passages and do not help in improving the connectivity of A main difficulty in constructing good roadmaps results
roadmaps. So despite the improvement, sampling near obstdi@en narrow passages if. Narrow passages are small regions
boundaries may waste many samples in uninteresting regiovizose removal changes the connectivity Bt they may
(see Fig. 3). In some special cases, the Gaussian sampler dznge the way different regions are connected, or even change
be extended to reduce the number of wasted samples by payimg number of connected components. To capture the connec-
a higher computational cost. tivity of F in the roadmap, it is essential to sample milestones

Other approaches to narrow passage sampling include dilat-narrow passages. This, however, is difficult because of
ing the free space [20] and retracting to the medial axis of fréeeir small volumes. Any volume-based sampling distribution
space [22]. Both require geometric operations that are expéndikely to fail. In particular, the uniform distribution does
sive to implement in high-dimensional configuration spacesot work well. Furthermore, when dealing with many-dof
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robots, we do not have an explicit representationfofand
cannot locate narrow passages directly by processing the
global geometry ofF.
Our goal is to build a good roadmap by sampling a small "
number of well-placed milestones. To obtain milestones in nar-
row passages, we pay a higher cost for sampling a mileston
than simpler methods such as uniform sampling. However,
the intuition is that our roadmap would require much fewerg. 2. Building short bridges is much easier in narrow passages (left) than
milestones to coveF and capture its connectivity, thus saving "1dé-0pen free space (right).
a lot of time in checking collision-free connections between
the milestones.

is given by metric. However, when the size ¢f is large, there may still

be too many milestones whose distances;tare less than
T = Nl * Twil + Neon * Teon; the threshold. So the planner tries to conngetith only the
K nearest such milestones, whékeis a fixed constant. The
intuition is that if the planner cannot establish connections
from ¢ to the K nearest milestones, most likely it will not be
able to establish connections to other milestones further away.

where

Twi: the average cost of sampling a milestone,
Npi: the number of milestones in the roadmap,
T.on: the average cost of checking collision-free
connections between two milestones,
N.on: the number of calls to check collision-free A. The Algorithm
connections between two milestones. The bridge test is designed to boost the sample density in
narrow passages using only simple tests of local geometry.
To illustrate the potential benefits of our approach, let us logKis pased on the following observation. A narrow passage
at a numerical example. Assume tfiafy = ¢ andTcon = 10, iy an n-dimensional configuration space has at least one
as the cost of checking collision-free connections between tWektricted directiony such that small perturbations of the
milestones is much higher than that of sampling a milestongpot's configuration along result in collision of the robot
Assume also thaW/,;; = n, and every milestone is checked fokyith opstacles. Therefore, for a collision-free configuration
connection with two nearby milestone®., Neon = 2-Nmil = in a narrow passage, it is easy to sample at random a short
2n. The total running time is thei" = n-t+2n-10t = 21nt.  |ine segment throughg such that the endpoints eflie in the
Now suppose that we pay a higher cost in sampling, but &gstacles ir¢ (Fig. 23). The line segment is called abridge
able to reduce the number of milestones needed. For examplgsause it resembles a bridge across the narrow passage. We
Twmi = 100t, and Ny = n/10. Then we have the total gay that a poiny € F passes the bridge test, if we succeed
running timeT" = n,/10- 100t +2n/10 - 10t = 12nt, which is iy obtaining such a segmeathroughg. For convenience, we
roughly half of the original running time. By paying a highelyiso say thats passes the bridge test. Clearly buildisigort
costThy, e reduce the number of milestones needed in thgigges is much easier in narrow passages than in wide-open
roadmap and thus redud¥.o,. SinceTc,, is usually much fee space. By favoring shorter bridges over longer ones, we
larger thanTi,;, the cost of checking connections betweeycrease the chance of accepting points in narrow passages
milestones dominates, and reducing,, results in reducing (rig, 2).
the total running time. Although the numerical values in 1o sample a new milestone using the bridge test, we pick
this example are chosen for the purpose of illustration aRdjine segment from C by choosing its endpoints at random
should not be taken literally, the intuition behind holds morgnq test whethes passes the bridge test. If so, we add the
generally and is supported by the experiments (see Sectigipoint of s to the roadmag as a new milestone. We call

VII). However, we must be careful in balancing the coshjs algorithm Randomized Bridge Builder (RBB). The details
and the benefit. If the increase #,; is much higher than of RBB are shown below.

the decrease inV..,, the benefit of our approach will be
diminished. Thereford,,; should be kept small, if possible. Algorithm 1 Randomized Bridge Builder (RBB).
The sampling distribution that we use for our planner if

IV. THE BRIDGE TEST

: : o repeat
a yvelghted mixture ofyrB,_ the dl_strl_bun_on generated_ by the2' Pick a pointz from C uniformly at random.
bridge test, and-, the uniform distribution. We describe how .
to constructry and combine the two distributions in the next’ If CLEARANCE(z) returnsFALSE then
B 4. Pick a pointz’ in the neighborhood of according

two sections.

After sampling a new milestone, our planner tries to
connectg to nearby milestones via collision-free straighté'
line paths. Like other PRM variants, our planner tries tg’
connect two milestones only if they lie in different connectegd’
components of the roadmap and the distance between them_

to a suitable probability density,,.
if CLEARANCE(z’) returnsFALSE then
Setq to be the midpoint of line segment:’.
if CLEARANCE(q) returnsTRUE then
Insertq into G as a new milestone.
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In lines 3, 5, and 7, RBB calls the functicd®LEARANCE to T
test whether a point i€ is collision-free. y '
To perform the bridge test, RBB uses only a single ge-
ometric primitive, CLEARANCE, which can be implemented ) ]
efficiently using a collision detection algorithm (sesg, [30], - ) b e g
[31]). The bridge test is purely local and does not requirg . - .
processing the global geometry 6f :
RBB pays a higher cost to sample a milestone than sim N
pler alternatives such as uniform sampling, because of tw e e
reasons. First, it takes three calls @EARANCE for RBB
to accept a milestone, one for the milestone itself and two

for the endpoints of the bridge passing through the milestoridg- 3- Milestones generated by the Gaussian sampler and RBB. The total
S d. it reiect | fracti ff fi ti thmtlmber of milestones in the two cases is the same. RBB generates fewer
econd, It rejects a large iraction of iree connigurations th@hesiones along the circular boundaries and many more in the narrow passage

are normally accepted by other sampling strategies. Howewugiinecting the two circular chambers.

RBB increases the sample density in narrow passages, which

are critical in capturing the connectivity of the free space. For

configuration spaces with difficult narrow passages, it usuallyhere Z, = fc M. (z")I(2") d2’ is a normalizing constant. To
leads to smaller roadmaps and saves lots of computation tig3gculater,, at a pointq € F, we condition onX:

in checking collision-free connections between milestones, an ,

operation that is usually more expensive than the additional m(q) = / Fex (@ | 2) fx () da. 1)
cost that RBB spends in sampling milestones. ¢

Gaussian sampler RBB

Note thatp is the midpoint of the line segmentz’ and so

x’ = 2q — x. Substituting the expressions @k, fy/ x, and
.

B. Choosing the Probability Density, @' into (1), we have
The density function\, (Algorithm 1, line 4) determines ms(q) = /B)\x@q —x)I(2q — x)/Z, du. 2)

how frequently a bridge of particular length is chosen for a We have chosen, to be a Gaussian with its center at

test at the pointz. Short bridges are preferred over longeand a small standard deviation. The densityis large ifz' =

ones in order to increase the probability of sampling in narroyy; — 4 lies relatively close taz. Furthermore, the integrand

passages. We choose to be a radially symmetric Gaussianin (1) is non-zero only if[(2¢ —z) = 1, i.e, 2/ € B. In the

with its center atz and a small standard deviatien To be neighborhood of a poinj inside a narrow passage, it is more

specific, letN (o) denote the univariate Gaussian distributiofkely to find pairs of pointsz and z’ that satisfy these two

with mean 0 and standard deviatien We sample a value conditions, resulting in a larger value fat, at q.

randomly and independently for each dimensiorC aiccord-

ing to N (o), shifted to center at the corresponding coordinat®. Comparison with Sampling Near Obstacle Boundaries

of z. The density function\, is then the product of these ppgp js related to the Gaussian sampler [3]. Both use one
independent univariate Gaussians. Other ways t0 construgh e geometric primitiveCLEARANCE to create favorable

radially symmetric Gaussian are also possible. Finally thgsiihutions. RBB is slightly more expensive: it makes one

parametero depends on the width of narrow passages thgfqre call tocL EARANCE in each invocation than the Gaussian
we want to capture. The best value toris problem-specific

- = ) ! ' sampler and rejects more samples. However, the nature of the
and we discuss this issue further in Section VI-B. two sample distributions generated are quite different. RBB
increases the sample density in regions where short bridges can
be easily constructed; the Gaussian sampler increases the sam-
ple density near obstacle boundaries. See Fig. 3 for the differ-

To calculate probability density, of the milestones created€nce between the two sample distributions. If milestones near
by Algorithm 1, let us first defin& and X’ to be two random obstacle boundaries all improve the connectivity of roadmaps,
variables, representing respectively the two endpoints ofthe Gaussian sampler is preferable, as it incurs lower cost per
bridge. The first endpoinX is distributed uniformly over the invocation. On the other hand, obstacle boundaries may be
set of configuration-space obstacl8s So the densityf, (z) Uninteresting if they are bounding wide-open regions-ofas
is non-zero if and only ifz lies in B. Assume, without loss samples near these boundaries do not contribute to improving
of generality, that3 has volume 1. Therf,(z) is 1 if z € B the connectivity of roadmaps. Therefore, RBB gains efficiency
and 0 otherwise. Give¥ = z, we choose the other endpoin®y avoiding sampling near such boundaries. In this sense, RBB
X' = 2’ according to the density,. The pointz’ is accepted and the Gaussian sampler are complementary.
only if it lies in B. Let I be a binary function such that for
any pointg € C, I(q) = 1 if ¢ € B and 0 otherwise. The
conditional density ofX’ given X is given by

C. Analysis of the Sampling Distribution

V. COMBINING COMPLEMENTARY SAMPLING
DISTRIBUTIONS

We have seen that RBB helps in boosting the sample density
fxnx (@ | @) = N (2)I(2") ) Zs, in the subseP of F occupied by narrow passages. The density
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™o s example, a planar articulated robot with a free base and three
" links of lengthd/y, l2, andls, respectively. The configuration of
- this robot can be represented(@asy, 61, 02, 03), wherexz and
T y specify the position of the base, aftd 8, andf; specify the
\/— angles for the three joints in increasing order of their distance
o to the base along the kinematic chain. Assume that the robot
is fully extended. If9; changes by an angle, the tip of the
robot moves a distance 6f; + 1> +13)p. If 65 changes by the
Fig. 4. The hybrid sampling distribution. The distributionsts and 7y same anglgo_, the tip moves by a distance (),EQ + 13)99' We
perform well onP and F\P, respectively. Combining them with suitable MUSt take this into account for our planner in two occasions.
weights leads to good performance over the entire sampling dofain First, when choosing the density function in RBB, we
need a consistent measure of how restrictive the allowable
motion is in the narrow passages along each dimension of
7 IS heavily biased towardB. At the same timer,, penalizes the configuration spacé. Our solution is to rescal€. For
wide-open collision-free regions: few milestones are sampledch configuration space coordinajelet d; be the maximum
in F\P. This is undesirable, because a good roadmap mutstance traveled by any point on the robot when the robot
cover the entire free space adequately. moves between any two configurations that have identical
Interestingly, we can make up the deficiencymgfwith the coordinates in all dimensions except[32]. We rescale the
uniform distribution ;, which samplesF with probability range ofg; to [0, d;]. This method of rescaling is quite general
proportional to the volumes of subsets fa For m,, most and can be applied to any translational or rotational dof of a
milestones are sampled i#\P, as it has a large volume.robot. In our planar articulated robot example, for translational
The two distributions complement each other naturalty: dofs, the scaling factors are 1, and rescaling has no net effect.
provides good coverage 67\ P, andr, samples more denselyFor rotational dofs, we have, for examptk, = (l2+13)27 for
in P and thus improves the connectivity of the roadmap. Thefe joint angle),, and we can scale other joint angles similarly.
are combined to produce a hybrid sampling distribution;  For rigid robots in 3-D, rotational dofs can be represented with
3 either Euler angles or quaternions. If Euler angles are used,
. ) . . the scaling factor for each Euler angle is calculated exactly
wherew is a weight, with0 < w < 1. The choice ofw o same way as that for the joint angle of articulated robots:
depends on the difficulty of sampling in narrow passages agid: 97 L;, whereL, is the maximum distance of any point on

the number of mileston_es_needed to c_;oj}ér ., .. .. .. the robot to the axis of rotation for the corresponding Euler
_ One useful way of thinking about this hybrid distributien 5,16 . If quaternions are used, the calculation is slightly
is to divide 7 into two subsets, the set of narrow passagesyre involved. but the principle is the same

P and its 'complemenﬂ-‘\P. We use a dnfferent samplmg' We need to consider this scaling issue again, when adding a
strategy tailored to each SUbSGT‘t and co_mblne the_m to ach'?\\é@v milestoney to the roadmap. The planner tries to conngct
EOOd pe_\lrlforma_nce 0,\\l/er th(:] entire sarﬁplm_g domalln. See FﬁNﬂh existing milestones within a certain distance. So we need
or an | gstratlon. ote, JOWeVer, t.at In-our pianner, t suitably-defined distance metric 6nldeally the metric has
comblnatlon of wo sampling §tr§1teg|es IS af:_hleved throug e property that for any two free configurationgnd¢’, the
weighting and not through explicit decomposition 5f greater the distance betweerandq’ is, the more likely that

The significancg of hyb.rid §amp|ing is not about putting .toche robot encounters an obstacle when following a straight-line
gether two sampling distributions, but rather about |dent|fy|rr|§

distributi | tarv in their st th d bini ath fromg to ¢’. Again we have to rescalé so that each
IStributions compiementary in their srengths and combiNing., o ysion of¢ has a similar effect on the overall motion of the
them so that their individual strengths are preserved.

. S e . robot. After rescaling, we can simply define the metric(n
To implement the hyb.”d distribution, we can certalnl)fo be the Euclidean distance between two configurations. This
generate new ra}‘ndom p?lnts ”0’7’?“ but we can get some scaling heuristic is often used in motion planning (see,
of these pomts for freg by reusing the points rgjecteq bP’?]). Other heuristics can also be used. For instance, instead of
RBB. In line 3 of Algorithm 1, RBB rejects a Conflguratlonusing the maximum distance traveled by any point on the robot

i'(:f :3:LeErAEAcI:\IhCE(i())nrf'ew:2?;?%1 ':C"tlx 'Sh;f!ls's'(;nr;grea?é d as a measure of the “distance” between two configurations, we
WEVET, su 'guratian IS exactly what Is g can use the volume swept out by the robot.

by 7. To reduce computation time, we can savand use it
instead of generating a new one fram when needed.

F\P P

7=(1—-w) 7 +w-my,

B. Parameters for the Sampling Distribution

VI. IMPLEMENTATION ISSUES . . .
Two parameters are needed to fix the hybrid sampling

In this section, we describe some details for implementingsiribution . The first parameter fixes the density function

our planner on rigid and articulated robots. )\, for RBB. As we have discussed earligr, is a product of
o _ _ independent Gaussians, with a small standard deviati¢m
A. Parameterizing the Configuration Space bias towards sampling short bridges. The parametzpends

Often, each dimension of the configuration space may hawe the width of narrow passages to be captured and may affect
a different effect on the overall motion of a robot. Consider, fahe planner’'s performance. In practice, we can estimate the
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Fig. 5. A planar rigid-body robot maneuvering through a small opening

between two large chambers.

value of o by analyzing the geometry of the robot and the
obstacles in the environment. For example, if the smallest

passage in the workspace has width and a rigid robot,
which translates and rotates, has maximum radiushen o
can be set to be proportional W'/ R.

The second parameter is the weight for combiningand

my. For our experiments, we assume no prior knowledge of

the environment. We do not bias towards eithgror 7, and
use a relative weight of 1:1.

The best parameters settings are clearly problem-dependent,
and it is difficult to choose them in advance. A promising

approach is to use a set of RBBs with differentvalues

and adjust the weight for each RBB adaptively through on- |
line learning [28]. This way, the best parameter values can be

identified automatically in an adaptive way.

VIl. EXPERIMENTS

We implemented two versions of our planner, one version
in Java for robots in 2-D environments and one version in
C++ for robots in 3-D environments. To examine the planner’s
performance, we hand-crafted several difficult environments
and tested our implementations extensively. The 2-D test

environments are described below:

o Fig. 5a: We have a rigid-body robot, and the query
asks the robot to go from one large empty chamber to
another through a small opening near the lower middle

of the figure. This is a case where we expect the hybrid e

sampling strategy to work well, because the bridge test
eliminates many sampled configurations that lie in the
middle of wide-open space and are unlikely to improve
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the coverage or connectivity of the roadmap. Figutes 5

5d show the roadmaps generated by uniform sampling,
pure RBB, and hybrid sampling, respectively. Each sam-
pling strategy uses the same number of milestones. The
roadmap constructed by uniform sampling covers the
free space well, but wastes many milestones in the two
chambers and does not put any milestone near the small
opening. Note that in these figures, the milestones are pro-
jected from the 3-dimensional configuration space to the
2-dimensional workspace for drawing. Two milestones
appear close to each other in the figures may be far away
from each other in the configuration space because of
different orientations, and therefore there may not be a
collision-free straight-line path that connects them. Pure
RBB puts a large number of milestones near places where
it can successfully build “bridges”, including the small
opening between chambers. This enables it to capture the
connectivity of the free space well. However, the roadmap
constructed by RBB has poor coverage: very few mile-
stones are in the two chambers to cover the free space.
This does not cause a big problem here, because the two
chambers in this example are convex, and every point
inside a chamber can cover a large portion of the chamber.
However, in general, more milestones are needed, if the
chambers have more complex geometry. Hybrid sampling
combines the strengths of uniform sampling and RBB to
build a roadmap that has good coverage and captures the
connectivity of the free space well.

« Fig. 6: According to our analysis in Section Ill, sampling

with the bridge test works well, only if the resulting
roadmap contains much fewer milestones than those
generated by other sampling strategies. We constructed
this example so that the bridge test does not have such
an advantage. This planar environment for a point robot
contains a long path that has almost equal width every-
where. So almost every sampled configuration passes the
bridge test. The roadmap constructed with the bridge test
would have roughly the same size as that constructed by
uniform sampling or Gaussian sampling.

Fig. 7: A rigid-segment robot enters a narrow corridor,
reorients in a small circular room, and exits another
narrow corridor. This environment is an example of con-
nected narrow passages in different orientations. When
the robot is inside one of the two corridors, it can only
translate along the direction of the corridor. Movements
in the orthogonal directions are very restricted: it cannot
translate sidewise or rotate. When the robot is inside
the small circular room in the middle, the rotational
movement is unrestricted, but the translational movement
is very restricted, as the diameter of the room is only
slightly more than the length of the robot. In the 3-
dimensional configuration space, the two corridors and
the round room in the middle map to three connected
narrow passages in different orientations.

Fig. 8: In this example, we have a T-shaped robot with
two parts, a “torso” and a “shoulder”, connected by a
joint. The planar environment contains a long and narrow
corridor with two turns.
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Fig. 6. A partial roadmap built by RBB for Fig. 7. A path for a rigid segment translating andFig. 8. A path for a T-shaped robot moving
a point robot in the plane. rotating in a narrow region. through a long, narrow corridor.

_geal

i =
T

Fig. 9. A 7-dof articulated robot with a fixed base. The left figure showBig. 10. An 8-dof articulated robot with a mobile base. The left figure shows
the query configurations. The right figure shows those milestones generdteal query configurations. The right figure shows those milestones generated
by RBB. by RBB.

« Fig. 9: This environment contains a seven-dof articulategeights for the two components. We also systematically varied
robot with a fixed base. At the initial configuration, thehe standard deviation of the Gaussian for the bridge test
robot is trapped inside a narrow opening. Joint angles ndstweenl /128 and 1/16 to choose the best setting. It turned
the robot’s base have very limited range of motion. Joimtut thato = 1/32 worked well in all the experiments.
angles near the robot’s tip can move relatively freely. As To add a new milestone to the roadmap, the planner tries
the robot performs difficult maneuvers to pull out of théo connectgy with an existing milestoneg’, only if (i) ¢ and
narrow opening, an increasing number of joints have thejt are in different connected components, (ii) the distance
motion restricted, until the robot pulls out completelbetweeng and ¢’ is smaller than a threshol®, and (iii) ¢’
and all the joints can move freely. The robot then hds a K-nearest neighbor afj. This method of adding nodes,
to insert itself into the other narrow opening to reach thealled nearesk’, has been used in earlier work for comparing
goal configuration. The sequence of events are similaampling strategies [25], [26] and shown robust performance
but occur in reverse order. in extensive experiments. Based on earlier experimental results

« Fig. 10: This environment contains a relatively shorfseee.g, [25], [26]) and our own experiences, we have chosen
corridor with two turns. Each milestone in the corridoD to be 0.25 andX to be 20. We have intentionally chosen
covers only a small portion of the free space. The robstightly lower values so that our planner does not get unfair
is an articulated robot with six links and a mobile bas@dvantages.
eight dofs in total. We also ran the same experiments with two other sampling

) ] ] strategies, the uniform sampler and pure RBB (without mixing
We tested these environments with the Java implementatigi, uniform sampling). The uniform sampler is used mainly

of our planner. For each test environment, we rescaled the 5 way to calibrate the difficulty of the queries, and RBB is
configuration spac€ to [0,d;] x [0,ds] x ---, as described ysed to examine the benefit of hybrid sampling. For RBB, the
in Section VI. Since all the environments are bounded, Wgandard deviation of the Gaussian is set /8. Without the
applied an additional uniform scalingd, whered = max; di, nelp from the uniform sampler, we cannot makeoo small.
so thatC fits within a unit hyper-cube, in order to simplify thegtherwise, it would reduce the coverage of the roadmap and
implementation. adversely affect the performance of the pure RBB.

The relative weight for combining the two components For comparison, we also experimented with the Gaussian
andr of the hybrid sampling distribution was 1:le. equal sampler and visibility-based PRM (Vis-PRM), with optimized
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TABLE | TABLE Il
THE PERFORMANCE OF VARIOUS SAMPLING STRATEGIES A BREAKDOWN OF THE TOTAL RUNNING TIME INTO COMPONENTS
] DEFINED IN SECTION IIl FOR THE EXAMPLE INFIG. 10.T},;; AND T¢on
Env. dofs Sampler N Time (sec.)
(Fig.) avg Std ARE MEASURED IN THE NUMBER OF CALLS TOCLEARANCE.
5 3 Hybrid 302 3.9 2.2 ,
RéB 4,555 30.0 48.1 Sampler Ny Tmit Ncon  Tcon Time (sec.)
Visibility ’83 120.3 96.5 RBB 4,155 334 11,127 59.0 98.2
Gaussian 1.165 56 3.2 Uniform 35,822 1.8 50,315 66.2 1,803.3
- . i . Visibility 620 10825.2 4,955 93.9 698.1
7 3 Hybrid 900 7.4 2.8 - '
RO Eos6 347 5o Gaussian 3,255 185 15699 46.4 92.2

Uniform 47,064 995.0 234.7
Visibility 108 2359 106.8

Gaussian 2,276 8.4 3.9

8 4 Hybrid 916 71 29 .
RBB 3.422 171 63 harrow passages, as long as a reasonable, not necessarl!y the
Uniform 23,152  354.0 204.3 best, value forr is chosen. This shows the benefit of hybrid
Visibility 209 1488 453 sampling even if we do not know the best value &or
Gaussian 1,976 9.9 3.8 . . .

9 7 Hybrid 1307 1113 421 In most of these experiments, RBB alqne W|thqut uniform
RBB 2,915 2311 855 sampling does not perform as well as hybrid sampling, because
\leg'lg’”rg 22;;%5 17%&3 2?388056 these environments contain both narrow passages and wide-
Gaussian 1,619 1465  54.3 open fre«_a space. Without L_Jniform sampling, we have_ tarset

10 8  Hybrid 1,004 414 133 for the bridge test to a relatively large value in order to improve
RBB 4155 982 26.2 the coverage of the roadmap. As a result, the ability of the
Uniform 35,822 1803.3 783.2 brid identi i< reduced. leadi
Visibility 620 6981 173.8 ridge test to identify narrow passages is reduced, leading to
Gaussian 3,255 922 276 worse performance.

6 2 Ség"d 113?35 222-2 5653 For Vis-PRM and the Gaussian sampler, as well as our
Uniform  1.358 234 5.4 hybrid sampling strategy, they all try to reduce the size of the
Visibility 206 426 115 roadmap and improve computational efficiency by filtering out
Gaussian 1291 235 43 milestones that are not useful. Yet they differ in the filtering

cost (see Table I, column 3 for an example). To certify a
useful milestone, Vis-PRM must perform several tests to check

parameter settings. In particular, for the Gaussian Samp@,llision—free connection between milestones, a very expensive
we varied the standard deviation of the Gaussian, using figgeration. The cost of filtering for both Gaussian sampling and
different settings betweeh/512 and1,/16, and chose the besthybrid sampling is much cheaper. Gaussian sampling takes two
one for each environment. calls to CLEARANCE to certify a useful milestone, and RBB
We ran each sampling strategy 30 times independently fgkes three calls. As a result, although Vis-PRM produces very
each test environment, and terminated the planner as soor$®&ll roadmaps (see Table I, column 2) and clearly improves
a path was found between query configurations. The avergy€r uniform sampling, its performance is weaker than the
number of milestones in the final roadmap,,;, and the Gaussian sampler and the hybrid sampling strategy using RBB.
average running time are shown in Table I. The statistics wel8is is expected in light of our discussion in Section Ill, and is
gathered from the Java implementation of our planner onWAly we suggest thak;,; must remain small for the filtering to
Linux workstation with a 2.8 GHz Pentium 4 processor. ~ be effective. Gaussian sampling assumes that useful milestones
Table | shows consistent results in these tests with differdift close to obstacle boundaries. When this assumption holds,
robots and environments. Hybrid sampling usually outpef-has an advantage over hybrid sampling (see the example
forms both the uniform sampler and pure RBB. Its roadmdf Fig. 6). When the assumption fails, it may be substantially
is much smaller (see column 4), and the total running time $¥ower than hybrid sampling, especially for robots with many
also shorter. The reduction in running time is not proportion8Pfs, as the example in Fig. 10 shows.
to the reduction in roadmap size, because hybrid samplingThe first five environments in Table | share a common
pays a higher cost to obtain a milestone than the simplgtaracteristic: they all contain narrow passages connecting
uniform sampling. However, the smaller roadmap size requireggions that allow relative unrestricted movement. This gives
much fewer tests to check collision-free connections betwean advantage to sampling strategies designed specifically for
the milestones in the roadmap (see Table 1), which are tharrow passages, such as the hybrid sampling strategy or
dominant factor in the total running time. So hybrid samplin@BB. The environment in Fig. 6 is different. It contains
is able to achieve good overall performance. This basicaly long path that has almost equal width everywhere. The
confirms our intuition on the benefit of using the bridge testgsulting roadmaps all have roughly the same size. So the
as described in Section llI. uniform sampler, which has low cost for sampling a milestone,
For hybrid sampling, the standard deviationused for performs better. However, even in this case, hybrid sampling
the bridge test does affect the performance, sometimes bypgsforms only 9% worse than uniform sampling.
much as 50%. Nevertheless, hybrid sampling performs betteMe also tested the C++ implementation of our planner
than uniform sampling and RBB in all the environments witih 3-D environments. For each environment, we manually
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Fig. 11. A rigid body translating and rotating freely in a 3-D environment.
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Fig. 12. A 6-dof robot manipulator.
specified several queries so that solving these queries indicates VIIl. DISCUSSION

that a roadmap captures the connectivity of the free space
well. Again each test was repeated 30 times independentlyCompared with the idea of sampling near obstacle bound-
For each test environment below, we show a graph that pié#es, the bridge test gains efficiency by filtering out those
the percentage of queries that a planner can answer corre8@§Iples near uninteresting obstacle boundaries, but it is not
as the running time increases. perfect. Some uninteresting samples near corners can pass
the bridge test, because near the tip of a corner, it is easy
to build short bridges. Fig. shows that RBB generated a
« Fig. 11: This test uses a rigid-body robot translating antimber of milestones near the corners/fand many of these
rotating freely in a 3-D environment. The space is dividenhilestones may be unhelpful. The bridge test generates false
into eight chambers by walls with holes. We specifiedositives in this case, because it is a testamial geometry.
query configurations in all the chambers and ran thes Fig. 13 shows, if we only have information within a
planners until all possible connections are establishedhall neighborhood, we cannot tell the difference between a
among the query configurations. The configuration spanarrow passage and a narrow dead-end. Despite this problem,
here consists of many narrow passages, with a moderate experiments show that the benefits gained by sampling
amount of free space that allows unrestricted movemeirt. narrow passages usually outweigh the computation time
Pure RBB turns out to have the best performance, b&asted in sampling near corners (see Section VII).
cause it focuses on sampling in narrow passages. Thane can try to reduce the false positives near corners by tak-
performance of the hybrid sampling strategy is close. ing additional samples. For example, thhogonal tespicks
o Fig. 12: Here we have a six-dof robot manipulatoat random an additional segmesitthrough the configuration
arm. Horizontal and vertical bars are set up around thesuch that the segmeat is orthogonal to the bridge. We
robot to make its movement difficult. We specified 12cceptg as a new milestone, if the endpoints gfare both
queries. Each query requires the robot to move its enig-collision or both free, in addition to the normal conditions
effector from one opening between the bars to anothef s. This helps to reduce the false positives, because such
To answer a query, the robot must pull its end-effectgzamples often have one endpoint in collision and one endpoint
out of a narrow opening, move in relatively open fre¢ree. However, the orthogonal test is more expensive: it takes
space, and reinsert the end-effector into another narréive calls toCLEARANCE per test in the worst case, while the
opening. In this test, the hybrid sampling strategy, RBByriginal bridge test takes only three.
and the Gaussian sampler have similar performance, al\what is in common among the orthogonal test, the bridge
significantly better than uniform sampling. test, and the Gaussian sampler is that they all try to reconstruct
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e visibility. Removing any of them may disconnect the roadmap.
.’l ! e Therefore, after generating milestones using MAPRM, we can
L 7 N apply the bridge test to the milestones. Each milestone that
) passes the bridge test is retained; each one that fails is retained

with a certain probability. This way, we can get a smaller

Fig. 13. A narrow passage and a narrow dead-end. Within the smpiadmap without affecting its quality.
neighborhood marked by the dashed circles, there is not enough information
to differentiate these two cases.
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