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Abstract— Motion planning in uncertain and dynamic environ- B
ments is an essential capability for autonomous robots. Partially
observable Markov decision processes (POMDPs) provide a R(bo)
principled mathematical framework for solving such problems, R (ho)
but they are often avoided in robotics due to high computational o Y. 0
complexity. Our goal is to create practical POMDP algorithms 5 / /

and software for common robotic tasks. To this end, we have
developed a new point-based POMDP algorithm that exploits
the notion of optimally reachable belief space® improve com-
putational efficiency. In simulation, we successfully applied the
algorithm to a set of common robotic tasks, including instances Fig. 1. Belief space3, reachable spac®(bo), and optimally reachable
of coastal navigation, grasping, mobile robot exploration, and SPaceR”(bo). Note thatR*(bo) € R(bo) C B.

target tracking, all modeled as POMDPs with a large number

of states. In most of these instances studied, our algorithm gpace3 has dimensionality equal t&|, the number of robot
substantially outperformed one of the fastest existing point-based states. The size oB thus grows exponentially WitHsS|.

algorithms. A software package implementing our algorithm . L - .
will soon be released ahttp:/motion.comp.nus.edu.sg/ Consider, for example, robot navigation in a simple planar

projects/pomdp/pomdp.html i environment modeled as i x 10 grid. The resulting belief
space is 100-dimensional!
. INTRODUCTION To overcome this difficulty, one key idea of point-based

Partially observable Markov decision processes (POMDPRDMDP algorithms is tosample a set of point fromB
[17] provide a principled mathematical framework for planand use it as an approximate representation3pfinstead
ning under uncertainty, an essential capability for robotf representingZ exactly. Some early POMDP algorithms
operating in uncertain and dynamic environments. Howeveample the entire belief spad® using a uniform sampling
POMDPs are often avoided in robotics, because solvimgstribution, such as a grid. However, it is difficult to sample
POMDPs exactly is computationally intractable [9]. Not lon@ representative set of points frdndue to its large size. More
ago, the best algorithms could spend hours computing exaetent point-based algorithms sample ofilyd,), the subset
solutions to POMDPs with only a dozen states, which aof belief points reachable from a given initial poibg € B,
woefully inadequate for modeling realistic robotic tasks. lander arbitrary sequences of actions (Fig. 1). It is generally
recent years, point-based POMDP algorithms [5, 10, 1believed thatR(by) is much smaller thais. Indeed, focusing
19, 20] have made impressive progress by computing good R(by) allows point-based algorithms to scale up to larger
approximate solutions: POMDPs with hundreds of states hagwmmblems. To push further in this direction, we would like to
been solved in a matter of secondsg [5, 16, 19]). These sample neaR*(b), the subset of belief points reachable from
algorithms have the potential to make POMDPs practical fé§ underoptimal sequences of actions, &*(by) is usually
many applications in robotics and beyond. much smaller tharR(by). Of course, the optimal sequences

Our goal is to create practical POMDP algorithms andf actions constitute exactly the POMDP solution, which is
software for common robotic tasks. To this end, we hawenknown in advance. In fact, knowirf@*(bo) is in some sense
developed a new point-based POMDP algorithm that exploitsquivalent” to knowing the POMDP solution (see Section IlI-
the notion ofoptimally reachable belief spacds improve A). So we need to approximat®* (by).
computational efficiency. In simulation, we successfully ap- The main idea of our algorithm is to compute successive
plied our algorithm to a set of common robotic tasks, includingpproximations ofR*(by) and converge to it iteratively. Since
coastal navigation, grasping, mobile robot exploration, arfd*(by) is unknown in advance, the algorithm relies on heuris-
target tracking, all modeled as POMDPs with a large numbtc exploration to sampl&(by) and improves sampling over
of states. time through a simple on-line learning technique. It then uses

POMDP algorithms typically operate in a robot®lief a bounding technique to avoid sampling in regions that are
space A belief is a probability distribution over all possibleunlikely to be optimal and focus sampling on the region near
robot states, and the set of all beliefs form the belief spade:(by), the subset o8 most relevant to the POMDP solution.
Intuitively, the difficulty of solving POMDPSs is due to theThis leads to substantial gain in computational efficiency.
“curse of dimensionality”: in a discrete POMDP, the belief Focusing onR*(by) also brings an indirect benefit. Under



fairly general conditions, the solution to a POMDP can bB. Related Work

represented as a convex, pi(_acewise-lin&‘elue function[17]. POMDPs are a principled approach for planning and deci-
We represent the value function as alseff hyperplanes, each sion making under uncertainty [6, 17], but they are notoriously
of which must dominate the rest at some sampled point. B to solve [7, 9]. There have been significant efforts in

pruning away sampled points that are suboptimel, outside geyeloping approximation algorithms. See [1] for a recent
R*(bo), we can reduce the size f, thus further improving gyryey.

computational efficiency. Point-based algorithms have been particularly successful
in computing approximate solutions to large POMDPs [2,
Il. BACKGROUND 5, 10, 16, 19, 20]. Most of them usealue iteration[13].
Exploiting the fact that the optimal value function must satisfy
A. POMDPs the Bellman equation [13], value iteration algorithms start with

A POMDP models an agent taking a sequence of actioan initial policy represented as a value functidrand perform

. U . .Bgckup operations ol by iterating on the Bellman equation
under uncertainty to maximize its reward. Formally it is

specified as a tupléS, A, O, T, Z, R, ), where S is a set until the iteration converges. One important idea shgred by
. ’ X : the point-based algorithms is to sample a representative set of

of states,A is a set of actions, an@ is a set of observations. _ - ' :

| h i h lies | it tak points from the belief spacB and compute an approximately

n each time step, tde agent f|es in some states; 'E t% €S optimal value function by performing backup operations over
sorrrlle actioru < A an ”?‘“’esh rormdto afngw Stitel” .d U€  the sampled points rather than the entife They differ
ot (_a.uncertamty n act|on.,t een /sta @IS r/no eled as a jn phow they sample the belief space and perform backup
conditional probability functior’(s, a, s") = p(s’|s, a), which

) - 02 ) ~' operations. To improve computational efficiency, recent point-
gives the probability that the agent liesdf) after taking action based algorithms sample only the reachable spieg) from
a in states. The agent then makes an observation to gathg

\ ) . SCTVe N&h initial belief pointby.
information on its state. Due to the uncertainty in observation, gy, [10] is the first point-based algorithm that demon-

the obggrvation resudie O is again modeled as aconditionagtrated good performance on a large POMDP called Tag,
probability functionZ(s, a, 0) = p(ols, ). which has 870 states. Later point-based algorithms im-
_ Ineach step, the agent receives a real-valued reR@sda),  proved the performance significantly on this and other larger
if it takes actiona in states, and the goal of the agent is toponDPs. To our knowledge, HSVI2 [19] so far has the
maximize its expected total reward by choosing a suitable §gsst performance in general. HSVI2 uses heuristics to guide
quence of actions. For infinite-horizon POMDPs, the sequengg, sampling towards regions that help cut down the gap
of actions has infinite length. We specify a discount factqenyeen the upper and lower bounds on the optimal value
7 € [0,1) so that the total reward is finite and the problem igynction. FSVI [16] is another point-based algorithm, which
well deflorled. In this case, the expected total reward is giveRes 5 Markov decision process (MDP) to guide the sampling.
by E[3 7=, 7' R(st, ar)], wheres; anda, denote the agent's \ipp_guided sampling is effective for some problems, but
state and action at time the performance degrades when uncertainty is high and long
The solution to a POMDP is aoptimal policythat maxi- sequences of information-gathering actions are required.
mizes the expected total reward. Normally, a policy is a map- Qur algorithm is related to HSVI2 and FSVI, but it explicitly
ping from the agent's state to a prescribed action. Howevektempts to sample the optimally reachable sp@&gb,)
in a POMDP, the agent's state is partially observable amgrough learning-enhanced exploration and a bounding tech-
not known exactly. So we rely on the concept of beliefs. Agique. Experimental results show that focusing B&i(b)
described earlier, a belief is a probability distribution 0$eA js a promising idea. An early version of our algorithm [5]
POMDP policym: B — A maps a belieb € 55 to a prescribed exploits bounding in a limited way: bounds are compared
actiona € A. locally at individual belief points to prune suboptimal actions.
A policy 7 induces a value functio’(b) that specifies In contrast, the current algorithm sets up the bounds to reach
the expected total reward of executing policystarting from a specified value function approximation levelbgt thereby
b. It is known thatV*, the value function associated with theeveraging information globally to reduce the number of poor
optimal policy7*, can be approximated arbitrarily closely bysamples—those that are ®(b,) but not inR*(b).

a convex, piecewise-linear function One crucial reason for the computational intractability of
POMDPs is the high dimensionality @&. Low-dimensional
V(b) = max(a - b), approximations of83 therefore improve computational effi-

) o ) ciency greatly €.g, [12, 14]). These approaches are important,
wherel is a finite set of vectors called-vectors,b is the pyt beyond the scope of this paper.

discrete vector representation of a belief, and is the inner

product of vectorsy-vectorandb. Eacha-vector is associated I1l. SARSOP

with an action. The policy can be executed by selecting theWe now describe our algorithm, SARSOP, which stands
action corresponding to the bestvector at the current belief. for Successive Approximations of the Reachable Space under
So a policy can be represented as a set-okctors. Optimal Policies.



Algorithm 1 SARSOP.
1: Initialize the setI of a-vectors, representing the lower
boundV on the optimal value functiof*. Initialize the
upper bound/ on V*.
Insert the initial belief point, as the root of the tre@’;.
repeat
SAMPLE(T, T).
Choose a subset of nodes fraf,. For each chosen
nodeb, BACKUP(Tx, T, b).
6: PRUNHTR, I).
7. until termination conditions are satisfied.
8: return I'.

Fig. 2. The belief treé’z rooted atbg.

where |C| is the size ofC and Ry.x = max,, |R(s,a)| is
the maximum one-step reward.

A. Optimally Reachable Spaces Together, Theorems 2 and 3 say that computing approximate

A key idea of point-based POMDP algorithms is to samp%OMDP solutions is hard, but the problem becomes much
a representative set of points from the belief space and use i€88§ier, if a proped-cover of R+ (bo) is given. It follows that
an approximate represention of the space. For efficiency, m8¥ key difficulty must lie in computing such a cover. Once
recent algorithms sample froR (b, ), the set of points reach- the cover is obtained, we can find an approximate POMDP
able from a given poinb, € B under arbitrary sequences ofsolution in time polynomial in the cover size. So, instead of
actions. Theoretical analysis shows that approximate POMDiYowing the common approaches of directly approximating
solutions can be computed efficiently, whgib,) has a small V" or searching forr*, our SARSOP algorithm focuses on
covering numbef4]. Informally, the 5-covering numbec(s) ~ finding an approximate cover a2, (bo) through sampling.
of a setS is the minimum number of balls of radidsneeded  Since there may be multiple optimal policies, SARSOP aims
to coverS. So it is a measure of the “volume” df. to sampleR*(by) = U, R+ (bo), the union of all optimally

Theorem 1:For any b, € B, let C(§) be thej-covering reachable spaces.

number ofR (). Given any constart > 0, an approximation In the follpwing, to simplify the nptations, we omit the
V(bo) of V*(by), with error [V*(by) — V(by)| < ¢, can be argumentby in R(bg) and R*(bo). It is understood thaRk
four?d i time 0 0 o =" andR* are reachable from a given initial poitg.

(1—7)2 2 1— B. Overview of the Algorithm
47 R Sy 2R | SARSOP iterates over three main functiorSAMPLE,

However, for many realistic robotics tasks, the assumptiGftCKUP, andPRUNE A sketch is shown in Algorithm 1.
of small R(b,) may not hold. We would like our algorithm Like all point-based algorithm, SARSOP samples a set of
to do well whenR(b,) may be large, butR.-(by), the points from the belief space. The sampled points form a tree
space reachable under an optimal policy, is small. As L= (Fig. 2). Each node of’; represents a sampled point. As
R (bo) is often much smaller tha(b,), the assumption there is no confusion, we use the same symbad denote
of small R- (by) is more likely to hold. Unfortunately, this P0th & sampled point and its corresponding nodé’in The
relaxed assumption is too weak, and the problem of compffeot of 7% is the initial belief pointby. To sample a new

ing approximate POMDP solutions remains hard, despite tR&INt b, we pick a nodeb from 75, as well as an action
assumption [4]. a € A and an observatiom € O according to suitable

probability distributions or heuristics. We then compute
using the formula

Theorem 2:Let by be any point inB and«* be an optimal
policy. Given a constant > 0, computing an approximation

V(bo) of V*(by), with error [V (by) — V*(bo)| < €|V *(bo)], b(s') = 7(b,a,0) = nZ(s',a,0) > _T(s,a,s")b(s),
is NP-hard, even if the covering number ®.-(by) is s
polynomial-sized. wheren is a normalization constant, and ins&rinto 7, as a

On the other hand, if we are given a set of balls of radiusChild of b. Clearly, every point sampled this way is reachable

that coverR .- (by), the problem becomes much easier [4]. WEOM bo. If we apply all possible sequences of actions and

call the setC, which contains the centers of this set of ballOPservations, the set of nodes’h is exactlyR. The key is,
a 5-coverof R« (by). of course, to avoid doing so and focus the sampling, instead,

on R*.

To achieve this, SARSOP maintains both a lower bound
and an upper bount on the optimal value functio*. The
setl’ of a-vectors represents a piecewise-linear approximation
to V* (Section II-A), and is also a lower bound when suitably
0 <|O|2 +1C]log (1- 7)6) initialized, using,e.g, a fixed-action policy [1]. For t_he upper

Y 2Rmax /)’ boundV, SARSOP uses the sawtooth approximation [1]. The

Theorem 3:For any b, € B and any optimal pol2icyrr*,
given a prope-cover C' of R« (by) with § = (217}7); an
approximationV (bg) of V*(bg), with error|V*(bg)—V (bg)| <

€, can be found in time




Algorithm 2 Performa-vector backup at a nodeof 7. condition, although reasonable, is inadequate. As the target

BACKUP(T%, T', b) gape at the root gets smaller, the sampling path must traverse
1: Foralla€ A, o€ O, a,, «— argmax,.r(a - 7(b,a,0)). deeperdown the tree. As we go down the tree, the set of points
2. Forallac A,s €S, in R increases much faster than the set of point®in and

aq(s) «— R(s,a) +7Y., o+ T(s,a,8)Z(s',a,0)aq(s"). it becomes increasingly difficult to sample fraRr. To focus
3: o «— argmax . 4(aq - b) ’ sampling neaR* and minimize sampling iR\ R*, we would
4: Inserto’ into T'. like to make the sampling path as shallow as possible while

still achieving the target gap at the root of7T;. A potential
upper bound can be initialized various ways, using the MDdflemma here is that some nodes with high expected rewards
or the Fast Informed Bound technique [1]. SARSOP uses tlie deep in the tree, and we must allow the sampling path to
upper and the lower bounds to bias sampling towa&Rds( go deep enough in order to reach them.

(see Section IlI-C). . a) Selective deep samplindAs each backup operation
Next, we perform backup at selected node$in A backup  chgoses the action thaaximizesthe expected reward, im-
operation at a nodé (_:ollates the information in the Ch'ldrenprovements in lower bounds are quickly propagated to the root
of b and propagates it back to We perform the standara-  \yhen nodes with high expected rewards are found. This not
vector backup (Algorithm 2), with the value function approxiynjy directly improves the policy but also provides information
mation represented as a $ebf a-vectors. The value function stop sampling more quickly in regions that are likely outside
approximation ab, obtained from thex-vector backup, is the 2« |n contrast, upper bounds cannot be propagated beyond a

same as that from the Bellman backup. However, the Bellmggge until the upper bounds fail the actions at the node are
backup propagates only the value, while theector backup syfficiently improved. Finding the best action is not enough.
propagates the gradient of the value function approximatigfhys we give preference to lower bound improvements and
along with the value to obtain a global approximation ovV&{ontinue down a sampling path beyond the node with a gap of

the entire belief space rather than a local approximatiohn aty—t¢ if we predict that doing so likely leads to improvement
Invocation ofsAMPLE andBACKUP generates new sampledi the lower bound at the root.

points anda-vectors. However, not all of them are useful

. : . . To make such a predication, conceptually we predict the
for constructing an optimal policy and are pruned to impro

V&t » .

: . : ptimum valueV*(b) at a nodeb and propagate the predicted

computatlongl eff|C|en.cy (see $ect|on lll-D). .value V' up towards the root. I¥/ improves the lower bound
SARSOP is an anytime algorithm that returns the best p0|l(é\( the root, we expantl and then repeat the procedure at the

found within a pre-specified amount of time. It graduall¥]ext selected node down the sampling path. Otherwise, we
reduces the gap between the upper and lower bounds o roceed to check the gap termination criterion described in

the value function abg, until it reaches either a pre-specifie he next subsection.

gap size or the time limit. ) ) . )
To predict the optimal valu&*(b), we use a simple learning
C. Sampling technique. We cluster beliefs according to suitable features and
The NP-hardness result described in Section I1-A suggeStSe previously computed values of beliefs in the same cluster
asb to predict the value ob. This allows us to learn which

that sampling fromR* is hard. We use heuristics and infor- X . >
mation gathered from earlier samples to guide the sampliRg"ts Of the belief space is worth exploring. Currently, we use
e initial upper bound and the entropy bfas the features

and improve the sampling distribution over time. FurthermorH} ) f ) ) . )
by using value function bounds, we try to avoid sampling ignd discretize the belief space into a finite number of bins

regions that are unlikely to be reachable under any Optm%ﬁcording to these two features. The average value of beliefs

policy, i.e., outside ofR*. See Algorithm 3 for the pseudocode!n @ Pin is used as the prediction for the value of any new
ief falling into the bin. If a bin is empty, the initial upper

To sample new belief points, SARSOP sets a target gap Al L : i
¢ between the upper and lower bound at the fgoof T, and bound of the new belief is used as its predicted value.
traverses a single path down, by choosing at each node the To implement this idea efficiently, we do not actually
action with the highest upper bound and the observation tHppagate the predicted valué back to the root. Instead,
makes the largest contribution to the gap at the roofpf We pass a lower-bound target leveddown the sampling path.
This is the same action and observation selection strategy usé@ predicted valué/ is checked against. If V fails to
in HSVI2 [19]. The sampling path is terminated under suitabl@eet the targe. at a nodeb, the lower bound ab will not
conditions. Together, the strategies for action and observati®® Propagated further up towards the root/gf.
selection and the choice of termination conditions control the Let us now consider how to pass the targeat a node to
resulting sampling distribution. a child nodeb’ = 7(b, a, 0). First, observe that value function

One termination condition is to stop when the samplingformation is propagated up from to b only if the actiona
path reaches a node whose gap between the upper and laat takesh to b’ has higher value than all other actionsbat
bounds is smaller tham—te, wheret is the depth of the node We thus calculate an intermediate target lelvefor a, which
in T [19]. If each leaf ofT; has a gap smaller tham—te, is set to the maximum ovel and the values of all the actions
the gap at the root is guaranteed to be smaller thahhis at b (Algorithm 3, lines 7-8). Next, observe that the lower



Algorithm 3 Sampling neafR*. b. This terminiation criterion has the same effect as requiring
SAMPLE(T%, T') all leaves to have a gap of no more thayrt: if all leaves
1: SetL to the current lower bound on the value function an 7= meet this termination criterion, the robg achieves the
the rootb, of Ty. SetU to L + ¢, wheree is the current target gap size ot. The upper-bound target levél can be

target gap size di. passed down a sampling path in a way similar to that for the
2: SAMPLEPOINTS(T%, T, bo, L, U, ¢, 1). lower-bound target level.. See Algorithm 3, lines 9 and 13.
The combination of selective deep sampling and the gap
SAMPLEPOINTS(T, I', b, L, U, €, 1). termination criterion leads to an effective sampling strategy
3: Let V' be the predicted value df*(b). that goes deep intd, when need. This avoids unnecessarily
4:if V < L andV(b) < max{U,V(b) +ey~*} then sampling iNnR\R* and gives a better approximation .
5:  return
6 else D. Pruning
7. Q< max, Q(b,a). The efficiency of backup operations, which take up a
8 L « max{L,Q}. s?gn?ﬂcant fraction qf the total computation time_, depends
o U — max{U,Q +'e}. S|gn|f|canFIy on th.e.S|ze of the.sE‘tof 'a-vectors. To improve
- computational efficiency, existing point-based algorithms usu-
10:  a « argmax, Q(b,a). ally prune amx-vector fromI' if it is dominated by others over
11: o « argmax, p(o|b,a’) (V(r(b,a’,0))— the entire belief spac#. The notion of optimally reachable
V(r(b,a,0))). space suggests an alternative and more aggressive pruning
122 Calculate L, so that I/ = 3. R(s,a')b(s) + technique: ideally, we want to prune amvector if it is
( (0']b,a’) Ly + 3 (olb, ")V (+(b,d’,0))). dominated by othen-vectors overR*, rather thanB. Since
TP ’ ¢ oo PROIO, A)LATD, @, R* is potentially much smaller thaBi, this may substantially
13:  Calculate Uy so that U = > R(s,a’)b(s) + reduce the size df and improve the efficiency of the backup
v (p(0’|b, a" Uy 4 3= o P(0]b, @)V (7 (b, ', 0))). operations and thus the overall algorithm.

As R* is not known in advance, we ugdg, the set of all
sampled belief points contained ., as an approximation.
To improve this approximation and to keep the sizésa&mall,
we prune fromB those points that are provably suboptimal
and do not lie inR*. For a nodé in Ty, if Q(b,a) < Q(b,a’)
for two actionsa anda’, then we prune all the sampled points

Q(b,a) = Z R(s,a)b(s) + VZP(OV% a)V.(v'). in the subtree resulting from taking actiaratb, as an optimal
s 0 policy will never take the action atb and traverse the subtree
Hence the target level fd¥ is the value needed faf(b,a) underneath. Itis possible that some pruned points may turn out
to achieve its targef’ (Algorithm 3, line 12). B to lie in R*, as there are other pathsih to reach them under

To guard against misleading predictions that result in uan optimal policy. However, the benefits of keepiBgsmall
necessarily deep samplings paths, we only continue dowrnusually outweighs the loss in the approximation quality due to
sampling path until the gap between the upper and lowever-pruning. These points can also be eventually recovered
bounds isky~te for somex < 1. The s value is set td).5 in  from the other paths ifi’;.
our current implementation. Belief point pruning in turn enables more aggressive

b) The gap termination criteriontf our prediction shows vector pruning. In SARSOP, an-vector is pruned if it is
no improvement of the lower bound at the root, we use tlimminated by others oved®. A simple criterion for dominance
target gap size at the root to decide whether to terminatés to say that for twax-vectorsa; andas, o; dominatesas
the sampling path and avoid sampling in regions unlikely @&t a belief point if a;-b > a5 -b. However, this is not robust.
be in R*. As mentioned earlier, the straightforward way ofhe setB is a finitely sampled approximation G¢*. Since
achieving the target gap sizebetween the upper and lowerSARSOP computes an approximately optimal policy ofger
bounds at the root df; is to require a gap size*e for all only, the computed policy may choose an action that causes
leaves ofl,. However, it is in fact sufficient to ensure that thét to slightly veer off R* and get into a region in which the
condition is satisfied somewhere along all the paths from thalue function approximation is poor. To address this issue, we
root to the leaves, rather at the leaves themselves. This hasithgose the more stringent requirement of dominance over a
advantage of leveraging information globally from the othereighborhoodn; dominatesy, at a belief point if «; -0’ >
parts of T, to terminate a sampling path as early as possible - b’ at every pointt’ whose distance té is less thand,
and thus improving computational efficiency. for some fixed constant. We call this§-dominance We can

To do this, we pass an upper-bound target Iéieiown checkd-dominance very quickly by computing the distante
the sampling path as well. For a nodleat deptht, we can from b to the intersection of the hyperplanes represented;by
terminate sampling if its upper bound is lower th&ib) + andas and making sure that > 4. In the implementation, the
eyt or the upper-bound targét passed down from parent ofvalue of§ can be set adaptively according to the effectiveness

14:.  V —71(bd,0).
15:  Insertd’ into T, as a child ofb.
16:  SAMPLEPOINTS(T%, T, ¥, Ly, Uy, €, t + 1).

bound on the value of actiom is
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(@) Underwater Navigation, an where z, represent§ the state of the rqbot_ andrepresents
instance of coastal navigation,the state of the environment. Inaccuracies in robot control and
shown on a reduced map withsensing are the typical causes for uncertainty,inThey are
a 11 x 12 grid. “S” marks gaimost always present to some degree. Uncertainty,jrOn
the possible initial positions for y,o Giher hand, varies widely. We thus divide the robotic tasks
the robot. The robot is equally - . . . .
likely to start in any of these _studled here_mto three categone; accordlng to t_he uncertainty
positions. “D” marks the des- IN Ze. In the first category, the environment is static and known
tinations. “R” marks the rocks. with high accuracy. So uncertainty i, can be ignored, and
“O" marks places that the robot we only need to consider uncertainty in in planning the
can fully localize itself. robot’s actions. In the second category, the environment is
static, but not known accurately. Thus, we must take into
account the uncertainty in both. andz. in planning. In the
last category, the environment is not static and changes over
time. We need a dynamic model of the environment and use
it to plan actions for the robot to respond to changes in the
environment.
a) Underwater NavigationWe start with an instance of
(b) Grasping. A fingered robot the \ell known coastal navigation problem. An autonomous
érm grasps a stepped bIOCk‘underwater vehicle (AUV) navigates in an environment mod-
ourtesy of L.P. Kaelbling and . X
T. Lozano-Rrez. eled as a5l x 52 grid map (Fig. &). The AUV needs to
navigate from the left border of the map to the right border. It
DOPDDDPDDDDD must avoid rocks scattered near the goals, as they may cause
I F 1 I severe damages to the vehicle. In each step, the AUV can either
T T T T T T T T T stay in the current position or move to any of the five adjacent
: positions directly above, below, or to the right. Due to poor
(c) Integrated Exploration. A robot navigates with an Uncertai{?isibility conditions, the AUV can only localize itself along

map. Areas shaded in black represent obstacles. Areas shade :
light gray represent (possibly damaged) bridges. “S” marks the stargéptOp or bottom borders, where there are beacon signals. The

location for the robot. “D” marks destination locations. environment is static and known in advance. So this problem
belongs to the first category.
bathroom Roughly, the optimal policy for the AUV is to move
diagonally until it reaches the top or bottom border to localize
) __@k_mge, itself. It can then safely pass through the rocks and get to

the destinations on the right border. A feature of this problem
(d) Homecare. A robot fol- is that heuristics assuming full observabilitg.g, an MDP
lows a moving person, the policy) favor shorter horizontal paths rather than diagonal
" Fﬁégféiengstg%?ésb¥ﬁe aﬁfﬁ paths and thus often choose the wrong action.
dashed curve indicates the b_) Grasplng: This problem yvas introduced in the quk
target's path. The green area Of Hsiao, Kaelbling, and Lozanoéez [3]. As a POMDP, this
around the robot indicates the problem is similar to coastal navigation: the environment is
the robot sensor’ visibility re- static and known, but due to limited sensing capabilities, the
gion. The various shades of ohot has difficulty in determining its own state exactly. It
gray show the robot's belief . . . .
of the current target position. needs to perfprm _|nf0rmat|on—gather|ng actions to reduce the
state uncertainty in order to reach the goal. However, as a
robotic task, grasping has quite different physical character-
istics. Here, a two-dimensional Cartesian robot arm with two
of a-vector pruning. A similar idea fon-vector pruning, but fingers tries to grasp a stepped block on a table (F[g 3
without using thes-neighborhood, is described in [15]. It has only contact sensors at the tip and the sides of each
finger to help determine the state. The robot performs com-
pliant guarded moves (left, right, up, and down) and always
We have successfully applied SARSOP to a set of distingfaintains contact with the surface of the block or the boundary
robotic tasks. In this section, we describe these tasks tbiethe environment at the beginning and end of each move.
experimental setup, and the results. The goal is to move the robot arm and have its two fingers
_ . straddle the block so that grasping is possible. More details
A. Robotic Tasks Studied on this problem can be found in [3].
Uncertainty arises in various ways in robotic systems. c¢) Integrated Exploration:For some tasks, robots must
Suppose that the state of a robotic system is givefubyz.), traverse an area whose map is highly uncertain, for example,

Fig. 3. Some common robotic tasks modeled as POMDPs.

IV. EXPERIMENTS



when robots perform SLAM tasks. In this situation, the rob@nd more complex environment dynamics. Imagine that an
must gather information to reduce map uncertainty, localisdderly person moves around at home. His motion is non-
itself, and navigate to reach the goal. This is sometimégterministic: he follows a fixed path (marked as a black
called integrated exploration8]. When the environment is dashed curve in Fig.d, but in each time step, he may pause
static, integrated exploration belongs to our second categasy.proceed along the path with equal probabilities. Along the
Unfortunately, despite a static environment, uncertainty in thpath, there is special location representing a bathroom, where
environment map causes the number of statesx:faio grow the person may stay for an extended duration. The person has a
exponentially. Recall further that increase in the number ofll button to call the robot over for help. The call button stays
states in turn causes the belief space size to grow exmm for some uncertain duration and then goes off. The robot
nentially. Currently, such doubly exponential growth is togets a reward only if it arrives in time. The robot can observe
difficult to manage, even for point-based POMDP algorithmthe person’s position when they are close enough. Clearly the
Our problem here models a similar, but simplified scenariobot should stay close to the person in order to track his

(Fig. 3¢). In one step, the robot can move from its currergosition well and improve the chance of receiving rewards. At
location to one of the eight adjacent locations horizontallhe same time, it also wants to minimize movement in order
vertically, and diagonally. The result of a move is uncertaio reduce power consumption. POMDP provides a principled
The robot can localize itself in several locations scattereehy to evaluate such trade-offs.
around the environment. To reach the destination, the robot )
may follow one of the long routes along the far left and righg: EXperimental Setup
sides of the environment or take a shortcut through one of theWe applied SARSOP to the above tasks. For each task,
bridges (shaded in light gray in Figc3 Due to flood damages, we first performed long preliminary runs to determine ap-
at most two bridges are still functional. The robot’s goal is tproximately the reward level for the optimal policies and the
reach the destination nodes as quickly as possible, using saatount of time needed to reach it. We then ran SARSOP for
an uncertain environment map. Even in this simplified setting,maximum of two hours to reach this level and recorded the
we still end up with more than 15,000 states. resulting policy. To estimate the expected total reward of the

d) Rock Sample:The Rock Sample problem first ap-policy, we performed sufficiently large number of simulation
peared in the work on HSVI [18]. In this problem, a roveruns until the variance in the estimated value was small. For
explores an area modeled as a small grid and looks for rogd@mparison, we also ran HSVI2 on these tasks, following the
with scientific value. The rover always knows its own positiosame procedure. Both algorithms are implemented in C++.
exactly, as well as those of the rocks. However, it does nbhey were compiled with g++ v4.1.2. The experiments were
know which rocks are valuable. The rover can take noisy longerformed on a PC with a 2.66GHz Intel processor and 2GB
range sensor readings to gather information on the rocks. Themory. For HSVI2, we used the newest software release by
accuracy of the sensor depends on the distance betweenitheriginal author, zmdp v1.1.3, which is a highly optimized
rover and the rocks. The rover can also sample a rock in tineplementation.
immediate vicinity. It receives a reward or a penalty, dependingFor SARSOP, th& value for a-vector pruning was set at
on whether the sampled rock is valuable. 1 x 1072 for the two largest problems, Rock Sample and

In this problem, the environment is static, and a map witHomecare, and x 10~* for the rest. The performance of

exact rock positions is available. However, the environmeS8ARSOP is affected by thevalue, but not sensitive to it. One
map that really matters is the one that marks the positionsiofportant consideration in the choice ®ifs the dimensionality
valuablerocks. This map is unknown in advance. and the rovef the belief space involved,e., the number of states. The
must infer this map from sensor readings. So this problem caugh guide that we have been using is 10~2 for POMDPs
be regarded as an instance of integrated exploration. with about 10,000 states or more ahek 10~ for those with

e) Tag: The Tag problem first appeared in the work osubstantially fewer states. We are currently implementing an
PBVI [10]. In Tag, the robot’s goal is to follow a target thaiadaptive technigue to sétautomatically and will include it
intentionally moves away. The robot and the target operatethe final software release.
in a grid environment with 29 positions in total. In one step
they can either stay or move one of four adjacent positio
(above, below, left, and right). The robot always knows its The results are shown in Table I. Column 2 of the table
own position, but can observe the target’s position only if thdists the estimated expected total rewards for the computed
are in the same position. The robot pays a cost for each m@aicies and the 95% confidence intervals. Column 3 lists the
and receives a reward every time that it arrives in the saroerresponding computation times.
position as that of the target. Here, the environment change$-or all six tasks, SARSOP obtained good approximate
over time due to the target motion. Thus the problem belongslutions within the two-hour limit. In five out of the six
the third category. tasks, SARSOP substantially outperformed HSVI2, sometimes

f) Homecare: This problem models a robot following aby several times. For two tasks (Integrated Exploration and
person around at home for caretaking purposes (Fiy. B Tag), HSVI2 was unable to reach a comparable reward level
is related to Tag, but involves a much larger number of statas that of SARSOP within the two-hour time limit. Thus, for

Results



TABLE |

effective sampling and pruning strategies in SARSOP.
PERFORMANCE COMPARISON

Along with other reports in literature [2, 3, 10, 11, 14, 19],

Onderwaer NEvigaton Reward Time (s) our results indicate that with the advances in POMDP solution
|61=2,653,| A|=6,|0| =103 algorithms, the POMDP approach is gradually becoming prac-
SARSOP 722.59 +1.30 72 tical for non-trivial robotic tasks. We are currently improving
grsa\g';ng 721.45 £ 0.75 20 the implementation of SARSOP and expect to release it soon
S|=1,253, A|=6,|0|=96 as a software package attp://motion.comp.nus.
SARSOP 320.00 £ 0.16 8 edu.sg/projects/pomdp/pomdp.html
HSVI2 319.88 £0.14 60
:gtle_{aﬁg Iixlri'grie(‘?t'ﬁq o5 AcknowledgementsiVe thank Yanzhu Du and Xan Huang for
SARsSOP (158 + 0.03) x 109 5400 helping with the software implementation. This work is supported
HSVI2 (1.41 + 0.02) x 106 5,400 in part by the MoE AcRF grant R-252-000-327-112.
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