
SARSOP: Efficient Point-Based POMDP Planning by Approximating
Optimally Reachable Belief Spaces

Hanna Kurniawati David Hsu Wee Sun Lee
Department of Computer Science, National University of Singapore

Singapore 117590, Singapore

Abstract— Motion planning in uncertain and dynamic environ-
ments is an essential capability for autonomous robots. Partially
observable Markov decision processes (POMDPs) provide a
principled mathematical framework for solving such problems,
but they are often avoided in robotics due to high computational
complexity. Our goal is to create practical POMDP algorithms
and software for common robotic tasks. To this end, we have
developed a new point-based POMDP algorithm that exploits
the notion of optimally reachable belief spacesto improve com-
putational efficiency. In simulation, we successfully applied the
algorithm to a set of common robotic tasks, including instances
of coastal navigation, grasping, mobile robot exploration, and
target tracking, all modeled as POMDPs with a large number
of states. In most of these instances studied, our algorithm
substantially outperformed one of the fastest existing point-based
algorithms. A software package implementing our algorithm
will soon be released athttp://motion.comp.nus.edu.sg/
projects/pomdp/pomdp.html .

I. I NTRODUCTION

Partially observable Markov decision processes (POMDPs)
[17] provide a principled mathematical framework for plan-
ning under uncertainty, an essential capability for robots
operating in uncertain and dynamic environments. However,
POMDPs are often avoided in robotics, because solving
POMDPs exactly is computationally intractable [9]. Not long
ago, the best algorithms could spend hours computing exact
solutions to POMDPs with only a dozen states, which are
woefully inadequate for modeling realistic robotic tasks. In
recent years, point-based POMDP algorithms [5, 10, 16,
19, 20] have made impressive progress by computing good
approximate solutions: POMDPs with hundreds of states have
been solved in a matter of seconds (e.g., [5, 16, 19]). These
algorithms have the potential to make POMDPs practical for
many applications in robotics and beyond.

Our goal is to create practical POMDP algorithms and
software for common robotic tasks. To this end, we have
developed a new point-based POMDP algorithm that exploits
the notion of optimally reachable belief spacesto improve
computational efficiency. In simulation, we successfully ap-
plied our algorithm to a set of common robotic tasks, including
coastal navigation, grasping, mobile robot exploration, and
target tracking, all modeled as POMDPs with a large number
of states.

POMDP algorithms typically operate in a robot’sbelief
space. A belief is a probability distribution over all possible
robot states, and the set of all beliefs form the belief space.
Intuitively, the difficulty of solving POMDPs is due to the
“curse of dimensionality”: in a discrete POMDP, the belief

b0

B

R(b0)
R∗(b0)

Fig. 1. Belief spaceB, reachable spaceR(b0), and optimally reachable
spaceR∗(b0). Note thatR∗(b0) ⊆ R(b0) ⊆ B.

spaceB has dimensionality equal to|S|, the number of robot
states. The size ofB thus grows exponentially with|S|.
Consider, for example, robot navigation in a simple planar
environment modeled as a10 × 10 grid. The resulting belief
space is 100-dimensional!

To overcome this difficulty, one key idea of point-based
POMDP algorithms is tosample a set of point fromB
and use it as an approximate representation ofB, instead
of representingB exactly. Some early POMDP algorithms
sample the entire belief spaceB, using a uniform sampling
distribution, such as a grid. However, it is difficult to sample
a representative set of points fromB, due to its large size. More
recent point-based algorithms sample onlyR(b0), the subset
of belief points reachable from a given initial pointb0 ∈ B,
under arbitrary sequences of actions (Fig. 1). It is generally
believed thatR(b0) is much smaller thanB. Indeed, focusing
onR(b0) allows point-based algorithms to scale up to larger
problems. To push further in this direction, we would like to
sample nearR∗(b0), the subset of belief points reachable from
b0 underoptimal sequences of actions, asR∗(b0) is usually
much smaller thanR(b0). Of course, the optimal sequences
of actions constitute exactly the POMDP solution, which is
unknown in advance. In fact, knowingR∗(b0) is in some sense
“equivalent” to knowing the POMDP solution (see Section III-
A). So we need to approximateR∗(b0).

The main idea of our algorithm is to compute successive
approximations ofR∗(b0) and converge to it iteratively. Since
R∗(b0) is unknown in advance, the algorithm relies on heuris-
tic exploration to sampleR(b0) and improves sampling over
time through a simple on-line learning technique. It then uses
a bounding technique to avoid sampling in regions that are
unlikely to be optimal and focus sampling on the region near
R∗(b0), the subset ofB most relevant to the POMDP solution.
This leads to substantial gain in computational efficiency.

Focusing onR∗(b0) also brings an indirect benefit. Under

fairly general conditions, the solution to a POMDP can be
represented as a convex, piecewise-linearvalue function[17].
We represent the value function as a setΓ of hyperplanes, each
of which must dominate the rest at some sampled point. By
pruning away sampled points that are suboptimal,i.e., outside
R∗(b0), we can reduce the size ofΓ, thus further improving
computational efficiency.

II. BACKGROUND

A. POMDPs

A POMDP models an agent taking a sequence of actions
under uncertainty to maximize its reward. Formally it is
specified as a tuple(S,A,O, T , Z, R, γ), whereS is a set
of states,A is a set of actions, andO is a set of observations.

In each time step, the agent lies in some states ∈ S; it takes
some actiona ∈ A and moves froms to a new states′. Due
to the uncertainty in action, the end states′ is modeled as a
conditional probability functionT (s, a, s′) = p(s′|s, a), which
gives the probability that the agent lies ins′, after taking action
a in states. The agent then makes an observation to gather
information on its state. Due to the uncertainty in observation,
the observation resulto ∈ O is again modeled as a conditional
probability functionZ(s, a, o) = p(o|s, a).

In each step, the agent receives a real-valued rewardR(s, a),
if it takes actiona in states, and the goal of the agent is to
maximize its expected total reward by choosing a suitable se-
quence of actions. For infinite-horizon POMDPs, the sequence
of actions has infinite length. We specify a discount factor
γ ∈ [0, 1) so that the total reward is finite and the problem is
well defined. In this case, the expected total reward is given
by E[

∑∞
t=0 γtR(st, at)], wherest and at denote the agent’s

state and action at timet.
The solution to a POMDP is anoptimal policy that maxi-

mizes the expected total reward. Normally, a policy is a map-
ping from the agent’s state to a prescribed action. However,
in a POMDP, the agent’s state is partially observable and
not known exactly. So we rely on the concept of beliefs. As
described earlier, a belief is a probability distribution overS. A
POMDP policyπ:B → A maps a beliefb ∈ B to a prescribed
actiona ∈ A.

A policy π induces a value functionV π(b) that specifies
the expected total reward of executing policyπ starting from
b. It is known thatV ∗, the value function associated with the
optimal policyπ∗, can be approximated arbitrarily closely by
a convex, piecewise-linear function

V (b) = max
α∈Γ

(α · b),

where Γ is a finite set of vectors calledα-vectors,b is the
discrete vector representation of a belief, andα · b is the inner
product of vectorsα-vectorandb. Eachα-vector is associated
with an action. The policy can be executed by selecting the
action corresponding to the bestα-vector at the current belief.
So a policy can be represented as a set ofα-vectors.

B. Related Work

POMDPs are a principled approach for planning and deci-
sion making under uncertainty [6, 17], but they are notoriously
hard to solve [7, 9]. There have been significant efforts in
developing approximation algorithms. See [1] for a recent
survey.

Point-based algorithms have been particularly successful
in computing approximate solutions to large POMDPs [2,
5, 10, 16, 19, 20]. Most of them usevalue iteration [13].
Exploiting the fact that the optimal value function must satisfy
the Bellman equation [13], value iteration algorithms start with
an initial policy represented as a value functionV and perform
backup operations onV by iterating on the Bellman equation
until the iteration converges. One important idea shared by
the point-based algorithms is to sample a representative set of
points from the belief spaceB and compute an approximately
optimal value function by performing backup operations over
the sampled points rather than the entireB. They differ
in how they sample the belief space and perform backup
operations. To improve computational efficiency, recent point-
based algorithms sample only the reachable spaceR(b0) from
an initial belief pointb0.

PBVI [10] is the first point-based algorithm that demon-
strated good performance on a large POMDP called Tag,
which has 870 states. Later point-based algorithms im-
proved the performance significantly on this and other larger
POMDPs. To our knowledge, HSVI2 [19] so far has the
best performance in general. HSVI2 uses heuristics to guide
the sampling towards regions that help cut down the gap
between the upper and lower bounds on the optimal value
function. FSVI [16] is another point-based algorithm, which
uses a Markov decision process (MDP) to guide the sampling.
MDP-guided sampling is effective for some problems, but
the performance degrades when uncertainty is high and long
sequences of information-gathering actions are required.

Our algorithm is related to HSVI2 and FSVI, but it explicitly
attempts to sample the optimally reachable spaceR∗(b0)
through learning-enhanced exploration and a bounding tech-
nique. Experimental results show that focusing onR∗(b0)
is a promising idea. An early version of our algorithm [5]
exploits bounding in a limited way: bounds are compared
locally at individual belief points to prune suboptimal actions.
In contrast, the current algorithm sets up the bounds to reach
a specified value function approximation level atb0, thereby
leveraging information globally to reduce the number of poor
samples—those that are inR(b0) but not inR∗(b0).

One crucial reason for the computational intractability of
POMDPs is the high dimensionality ofB. Low-dimensional
approximations ofB therefore improve computational effi-
ciency greatly (e.g., [12, 14]). These approaches are important,
but beyond the scope of this paper.

III. SARSOP

We now describe our algorithm, SARSOP, which stands
for Successive Approximations of the Reachable Space under
Optimal Policies.

Algorithm 1 SARSOP.
1: Initialize the setΓ of α-vectors, representing the lower

boundV on the optimal value functionV ∗. Initialize the
upper boundV on V ∗.

2: Insert the initial belief pointb0 as the root of the treeTR.
3: repeat
4: SAMPLE(TR, Γ).
5: Choose a subset of nodes fromTR. For each chosen

nodeb, BACKUP(TR,Γ, b).
6: PRUNE(TR, Γ).
7: until termination conditions are satisfied.
8: return Γ.

A. Optimally Reachable Spaces

A key idea of point-based POMDP algorithms is to sample
a representative set of points from the belief space and use it as
an approximate represention of the space. For efficiency, most
recent algorithms sample fromR(b0), the set of points reach-
able from a given pointb0 ∈ B under arbitrary sequences of
actions. Theoretical analysis shows that approximate POMDPs
solutions can be computed efficiently, whenR(b0) has a small
covering number[4]. Informally, theδ-covering numberC(δ)
of a setS is the minimum number of balls of radiusδ needed
to coverS. So it is a measure of the “volume” ofS.

Theorem 1:For any b0 ∈ B, let C(δ) be the δ-covering
number ofR(b0). Given any constantε > 0, an approximation
V (b0) of V ∗(b0), with error |V ∗(b0) − V (b0)| ≤ ε, can be
found in time

O

(
C
(

(1− γ)2ε
4γRmax

)2

logγ

(1− γ)ε
2Rmax

)
.

However, for many realistic robotics tasks, the assumption
of smallR(b0) may not hold. We would like our algorithm
to do well whenR(b0) may be large, butRπ∗(b0), the
space reachable under an optimal policyπ∗, is small. As
Rπ∗(b0) is often much smaller thanR(b0), the assumption
of smallRπ∗(b0) is more likely to hold. Unfortunately, this
relaxed assumption is too weak, and the problem of comput-
ing approximate POMDP solutions remains hard, despite the
assumption [4].

Theorem 2:Let b0 be any point inB andπ∗ be an optimal
policy. Given a constantε > 0, computing an approximation
V (b0) of V ∗(b0), with error |V (b0) − V ∗(b0)| ≤ ε|V ∗(b0)|,
is NP-hard, even if the covering number ofRπ∗(b0) is
polynomial-sized.

On the other hand, if we are given a set of balls of radiusδ
that coverRπ∗(b0), the problem becomes much easier [4]. We
call the setC, which contains the centers of this set of balls,
a δ-cover of Rπ∗(b0).

Theorem 3:For any b0 ∈ B and any optimal policyπ∗,
given a properδ-cover C of Rπ∗(b0) with δ = (1−γ)2ε

2γRmax
, an

approximationV (b0) of V ∗(b0), with error|V ∗(b0)−V (b0)| ≤
ε, can be found in time

O

(
|C|2 + |C| logγ

(1− γ)ε
2Rmax

)
,

b0

a1 a2

o1 o2

Fig. 2. The belief treeTR rooted atb0.

where |C| is the size ofC and Rmax = maxs,a |R(s, a)| is
the maximum one-step reward.

Together, Theorems 2 and 3 say that computing approximate
POMDP solutions is hard, but the problem becomes much
easier, if a properδ-cover ofRπ∗(b0) is given. It follows that
the key difficulty must lie in computing such a cover. Once
the cover is obtained, we can find an approximate POMDP
solution in time polynomial in the cover size. So, instead of
following the common approaches of directly approximating
V ∗ or searching forπ∗, our SARSOP algorithm focuses on
finding an approximate cover ofRπ∗(b0) through sampling.

Since there may be multiple optimal policies, SARSOP aims
to sampleR∗(b0) =

⋃
π∗ Rπ∗(b0), the union of all optimally

reachable spaces.
In the following, to simplify the notations, we omit the

argumentb0 in R(b0) andR∗(b0). It is understood thatR
andR∗ are reachable from a given initial pointb0.

B. Overview of the Algorithm

SARSOP iterates over three main functions,SAMPLE,
BACKUP, andPRUNE. A sketch is shown in Algorithm 1.

Like all point-based algorithm, SARSOP samples a set of
points from the belief space. The sampled points form a tree
TR (Fig. 2). Each node ofTR represents a sampled point. As
there is no confusion, we use the same symbolb to denote
both a sampled point and its corresponding node inTR. The
root of TR is the initial belief pointb0. To sample a new
point b′, we pick a nodeb from TR as well as an action
a ∈ A and an observationo ∈ O according to suitable
probability distributions or heuristics. We then computeb′

using the formula

b′(s′) = τ(b, a, o) = ηZ(s′, a, o)
∑

s

T (s, a, s′)b(s),

whereη is a normalization constant, and insertb′ into TR as a
child of b. Clearly, every point sampled this way is reachable
from b0. If we apply all possible sequences of actions and
observations, the set of nodes inTR is exactlyR. The key is,
of course, to avoid doing so and focus the sampling, instead,
onR∗.

To achieve this, SARSOP maintains both a lower boundV
and an upper boundV on the optimal value functionV ∗. The
setΓ of α-vectors represents a piecewise-linear approximation
to V ∗ (Section II-A), and is also a lower bound when suitably
initialized, using,e.g., a fixed-action policy [1]. For the upper
boundV , SARSOP uses the sawtooth approximation [1]. The

Algorithm 2 Performα-vector backup at a nodeb of TR.
BACKUP(TR, Γ, b)

1: For all a ∈ A, o ∈ O, αa,o ← argmaxα∈Γ(α · τ(b, a, o)).
2: For all a ∈ A, s ∈ S,

αa(s)← R(s, a) + γ
∑

o,s′ T (s, a, s′)Z(s′, a, o)αa,o(s′).
3: α′ ← argmaxa∈A(αa · b)
4: Insertα′ into Γ.

upper bound can be initialized various ways, using the MDP
or the Fast Informed Bound technique [1]. SARSOP uses the
upper and the lower bounds to bias sampling towardsR∗ (
(see Section III-C).

Next, we perform backup at selected nodes inTR. A backup
operation at a nodeb collates the information in the children
of b and propagates it back tob. We perform the standardα-
vector backup (Algorithm 2), with the value function approxi-
mation represented as a setΓ of α-vectors. The value function
approximation atb, obtained from theα-vector backup, is the
same as that from the Bellman backup. However, the Bellman
backup propagates only the value, while theα-vector backup
propagates the gradient of the value function approximation
along with the value to obtain a global approximation over
the entire belief space rather than a local approximation atb.

Invocation ofSAMPLE andBACKUP generates new sampled
points andα-vectors. However, not all of them are useful
for constructing an optimal policy and are pruned to improve
computational efficiency (see Section III-D).

SARSOP is an anytime algorithm that returns the best policy
found within a pre-specified amount of time. It gradually
reduces the gapε between the upper and lower bounds on
the value function atb0, until it reaches either a pre-specified
gap size or the time limit.

C. Sampling

The NP-hardness result described in Section III-A suggests
that sampling fromR∗ is hard. We use heuristics and infor-
mation gathered from earlier samples to guide the sampling
and improve the sampling distribution over time. Furthermore,
by using value function bounds, we try to avoid sampling in
regions that are unlikely to be reachable under any optimal
policy, i.e., outside ofR∗. See Algorithm 3 for the pseudocode.

To sample new belief points, SARSOP sets a target gap size
ε between the upper and lower bound at the rootb0 of TR and
traverses a single path downTR by choosing at each node the
action with the highest upper bound and the observation that
makes the largest contribution to the gap at the root ofTR.
This is the same action and observation selection strategy used
in HSVI2 [19]. The sampling path is terminated under suitable
conditions. Together, the strategies for action and observation
selection and the choice of termination conditions control the
resulting sampling distribution.

One termination condition is to stop when the sampling
path reaches a node whose gap between the upper and lower
bounds is smaller thanγ−tε, wheret is the depth of the node
in TR [19]. If each leaf ofTR has a gap smaller thanγ−tε,
the gap at the root is guaranteed to be smaller thanε. This

condition, although reasonable, is inadequate. As the target
gapε at the root gets smaller, the sampling path must traverse
deeper down the tree. As we go down the tree, the set of points
in R increases much faster than the set of points inR∗, and
it becomes increasingly difficult to sample fromR∗. To focus
sampling nearR∗ and minimize sampling inR\R∗, we would
like to make the sampling path as shallow as possible while
still achieving the target gapε at the root ofTR. A potential
dilemma here is that some nodes with high expected rewards
lie deep in the tree, and we must allow the sampling path to
go deep enough in order to reach them.

a) Selective deep sampling:As each backup operation
chooses the action thatmaximizesthe expected reward, im-
provements in lower bounds are quickly propagated to the root
when nodes with high expected rewards are found. This not
only directly improves the policy but also provides information
to stop sampling more quickly in regions that are likely outside
R∗. In contrast, upper bounds cannot be propagated beyond a
node until the upper bounds forall the actions at the node are
sufficiently improved. Finding the best action is not enough.
Thus we give preference to lower bound improvements and
continue down a sampling path beyond the node with a gap of
γ−tε, if we predict that doing so likely leads to improvement
in the lower bound at the root.

To make such a predication, conceptually we predict the
optimum valueV ∗(b) at a nodeb and propagate the predicted
value V̂ up towards the root. If̂V improves the lower bound
at the root, we expandb and then repeat the procedure at the
next selected node down the sampling path. Otherwise, we
proceed to check the gap termination criterion described in
the next subsection.

To predict the optimal valueV ∗(b), we use a simple learning
technique. We cluster beliefs according to suitable features and
use previously computed values of beliefs in the same cluster
as b to predict the value ofb. This allows us to learn which
parts of the belief space is worth exploring. Currently, we use
the initial upper bound and the entropy ofb as the features
and discretize the belief space into a finite number of bins
according to these two features. The average value of beliefs
in a bin is used as the prediction for the value of any new
belief falling into the bin. If a bin is empty, the initial upper
bound of the new belief is used as its predicted value.

To implement this idea efficiently, we do not actually
propagate the predicted valuêV back to the root. Instead,
we pass a lower-bound target levelL down the sampling path.
The predicted valuêV is checked againstL. If V̂ fails to
meet the targetL at a nodeb, the lower bound atb will not
be propagated further up towards the root ofTR.

Let us now consider how to pass the targetL at a nodeb to
a child nodeb′ = τ(b, a, o). First, observe that value function
information is propagated up fromb′ to b only if the actiona
that takesb to b′ has higher value than all other actions atb.
We thus calculate an intermediate target levelL′ for a, which
is set to the maximum overL and the values of all the actions
at b (Algorithm 3, lines 7–8). Next, observe that the lower

Algorithm 3 Sampling nearR∗.
SAMPLE(TR, Γ)

1: SetL to the current lower bound on the value function at
the rootb0 of TR. SetU to L + ε, whereε is the current
target gap size atb0.

2: SAMPLEPOINTS(TR, Γ, b0, L, U , ε, 1).

SAMPLEPOINTS(TR, Γ, b, L, U , ε, t).

3: Let V̂ be the predicted value ofV ∗(b).
4: if V̂ ≤ L andV (b) ≤ max{U, V (b) + εγ−t} then
5: return
6: else
7: Q← maxa Q(b, a).
8: L′ ← max{L,Q}.
9: U ′ ← max{U,Q + γ−tε}.

10: a′ ← arg maxa Q(b, a).
11: o′ ← arg maxo p(o|b, a′)

(
V (τ(b, a′, o))−

V (τ(b, a′, o))).
12: Calculate Lt so that L′ =

∑
s R(s, a′)b(s) +

γ
(
p(o′|b, a′)Lt +

∑
o6=o′ p(o|b, a′)V (τ(b, a′, o))

)
.

13: Calculate Ut so that U ′ =
∑

s R(s, a′)b(s) +
γ
(
p(o′|b, a′)Ut +

∑
o6=o′ p(o|b, a′)V (τ(b, a′, o))

)
.

14: b′ ← τ(b, a′, o′).
15: Insertb′ into TR as a child ofb.
16: SAMPLEPOINTS(TR, Γ, b′, Lt, Ut, ε, t + 1).

bound on the value of actiona is

Q(b, a) =
∑

s

R(s, a)b(s) + γ
∑

o

p(o|b, a)V (b′).

Hence the target level forb′ is the value needed forQ(b, a)
to achieve its targetL′ (Algorithm 3, line 12).

To guard against misleading predictions that result in un-
necessarily deep samplings paths, we only continue down a
sampling path until the gap between the upper and lower
bounds isκγ−tε for someκ < 1. Theκ value is set to0.5 in
our current implementation.

b) The gap termination criterion:If our prediction shows
no improvement of the lower bound at the root, we use the
target gap sizeε at the root to decide whether to terminate
the sampling path and avoid sampling in regions unlikely to
be in R∗. As mentioned earlier, the straightforward way of
achieving the target gap sizeε between the upper and lower
bounds at the root ofTR is to require a gap sizeγ−tε for all
leaves ofTR. However, it is in fact sufficient to ensure that the
condition is satisfied somewhere along all the paths from the
root to the leaves, rather at the leaves themselves. This has the
advantage of leveraging information globally from the other
parts ofTR to terminate a sampling path as early as possible
and thus improving computational efficiency.

To do this, we pass an upper-bound target levelU down
the sampling path as well. For a nodeb at deptht, we can
terminate sampling if its upper bound is lower thanV (b) +
εγ−t or the upper-bound targetU passed down from parent of

b. This terminiation criterion has the same effect as requiring
all leaves to have a gap of no more thanεγ−t: if all leaves
in TR meet this termination criterion, the rootb0 achieves the
target gap size ofε. The upper-bound target levelU can be
passed down a sampling path in a way similar to that for the
lower-bound target levelL. See Algorithm 3, lines 9 and 13.

The combination of selective deep sampling and the gap
termination criterion leads to an effective sampling strategy
that goes deep intoTR when need. This avoids unnecessarily
sampling inR\R∗ and gives a better approximation toR∗.

D. Pruning

The efficiency of backup operations, which take up a
significant fraction of the total computation time, depends
significantly on the size of the setΓ of α-vectors. To improve
computational efficiency, existing point-based algorithms usu-
ally prune anα-vector fromΓ if it is dominated by others over
the entire belief spaceB. The notion of optimally reachable
space suggests an alternative and more aggressive pruning
technique: ideally, we want to prune anα-vector if it is
dominated by otherα-vectors overR∗, rather thanB. Since
R∗ is potentially much smaller thanB, this may substantially
reduce the size ofΓ and improve the efficiency of the backup
operations and thus the overall algorithm.

As R∗ is not known in advance, we useB, the set of all
sampled belief points contained inTR, as an approximation.
To improve this approximation and to keep the size ofB small,
we prune fromB those points that are provably suboptimal
and do not lie inR∗. For a nodeb in TR, if Q(b, a) < Q(b, a′)
for two actionsa anda′, then we prune all the sampled points
in the subtree resulting from taking actiona at b, as an optimal
policy will never take the actiona at b and traverse the subtree
underneath. It is possible that some pruned points may turn out
to lie inR∗, as there are other paths inTR to reach them under
an optimal policy. However, the benefits of keepingB small
usually outweighs the loss in the approximation quality due to
over-pruning. These points can also be eventually recovered
from the other paths inTR.

Belief point pruning in turn enables more aggressiveα-
vector pruning. In SARSOP, anα-vector is pruned if it is
dominated by others overB. A simple criterion for dominance
is to say that for twoα-vectorsα1 andα2, α1 dominatesα2

at a belief pointb if α1 ·b ≥ α2 ·b. However, this is not robust.
The setB is a finitely sampled approximation ofR∗. Since
SARSOP computes an approximately optimal policy overB
only, the computed policy may choose an action that causes
it to slightly veer offR∗ and get into a region in which the
value function approximation is poor. To address this issue, we
impose the more stringent requirement of dominance over aδ-
neighborhood:α1 dominatesα2 at a belief pointb if α1 · b′ ≥
α2 · b′ at every pointb′ whose distance tob is less thanδ,
for some fixed constantδ. We call thisδ-dominance. We can
checkδ-dominance very quickly by computing the distanced
from b to the intersection of the hyperplanes represented byα1

andα2 and making sure thatd ≥ δ. In the implementation, the
value ofδ can be set adaptively according to the effectiveness

(a) Underwater Navigation, an
instance of coastal navigation,
shown on a reduced map with
a 11 × 12 grid. “S” marks
the possible initial positions for
the robot. The robot is equally
likely to start in any of these
positions. “D” marks the des-
tinations. “R” marks the rocks.
“O” marks places that the robot
can fully localize itself.

(b) Grasping. A fingered robot
arm grasps a stepped block.
Courtesy of L.P. Kaelbling and
T. Lozano-Ṕerez.

(c) Integrated Exploration. A robot navigates with an uncertain
map. Areas shaded in black represent obstacles. Areas shaded in
light gray represent (possibly damaged) bridges. “S” marks the start
location for the robot. “D” marks destination locations.

bathroom

target

robot

(d) Homecare. A robot fol-
lows a moving person, the
target. The light blue areas
indicate obstacles. The black
dashed curve indicates the
target’s path. The green area
around the robot indicates the
the robot sensor’ visibility re-
gion. The various shades of
gray show the robot’s belief
of the current target position.

Fig. 3. Some common robotic tasks modeled as POMDPs.

of α-vector pruning. A similar idea forα-vector pruning, but
without using theδ-neighborhood, is described in [15].

IV. EXPERIMENTS

We have successfully applied SARSOP to a set of distinct
robotic tasks. In this section, we describe these tasks the
experimental setup, and the results.

A. Robotic Tasks Studied

Uncertainty arises in various ways in robotic systems.
Suppose that the state of a robotic system is given by(xr, xe),

wherexr represents the state of the robot andxe represents
the state of the environment. Inaccuracies in robot control and
sensing are the typical causes for uncertainty inxr. They are
almost always present to some degree. Uncertainty inxe, On
the other hand, varies widely. We thus divide the robotic tasks
studied here into three categories according to the uncertainty
in xe. In the first category, the environment is static and known
with high accuracy. So uncertainty inxe can be ignored, and
we only need to consider uncertainty inxr in planning the
robot’s actions. In the second category, the environment is
static, but not known accurately. Thus, we must take into
account the uncertainty in bothxr andxe in planning. In the
last category, the environment is not static and changes over
time. We need a dynamic model of the environment and use
it to plan actions for the robot to respond to changes in the
environment.

a) Underwater Navigation:We start with an instance of
the well known coastal navigation problem. An autonomous
underwater vehicle (AUV) navigates in an environment mod-
eled as a51 × 52 grid map (Fig. 3a). The AUV needs to
navigate from the left border of the map to the right border. It
must avoid rocks scattered near the goals, as they may cause
severe damages to the vehicle. In each step, the AUV can either
stay in the current position or move to any of the five adjacent
positions directly above, below, or to the right. Due to poor
visibility conditions, the AUV can only localize itself along
the top or bottom borders, where there are beacon signals. The
environment is static and known in advance. So this problem
belongs to the first category.

Roughly, the optimal policy for the AUV is to move
diagonally until it reaches the top or bottom border to localize
itself. It can then safely pass through the rocks and get to
the destinations on the right border. A feature of this problem
is that heuristics assuming full observability (e.g., an MDP
policy) favor shorter horizontal paths rather than diagonal
paths and thus often choose the wrong action.

b) Grasping: This problem was introduced in the work
of Hsiao, Kaelbling, and Lozano-Pérez [3]. As a POMDP, this
problem is similar to coastal navigation: the environment is
static and known, but due to limited sensing capabilities, the
robot has difficulty in determining its own state exactly. It
needs to perform information-gathering actions to reduce the
state uncertainty in order to reach the goal. However, as a
robotic task, grasping has quite different physical character-
istics. Here, a two-dimensional Cartesian robot arm with two
fingers tries to grasp a stepped block on a table (Fig. 3b).
It has only contact sensors at the tip and the sides of each
finger to help determine the state. The robot performs com-
pliant guarded moves (left, right, up, and down) and always
maintains contact with the surface of the block or the boundary
of the environment at the beginning and end of each move.
The goal is to move the robot arm and have its two fingers
straddle the block so that grasping is possible. More details
on this problem can be found in [3].

c) Integrated Exploration:For some tasks, robots must
traverse an area whose map is highly uncertain, for example,

when robots perform SLAM tasks. In this situation, the robot
must gather information to reduce map uncertainty, localize
itself, and navigate to reach the goal. This is sometimes
called integrated exploration[8]. When the environment is
static, integrated exploration belongs to our second category.
Unfortunately, despite a static environment, uncertainty in the
environment map causes the number of states forxe to grow
exponentially. Recall further that increase in the number of
states in turn causes the belief space size to grow expo-
nentially. Currently, such doubly exponential growth is too
difficult to manage, even for point-based POMDP algorithms.

Our problem here models a similar, but simplified scenario
(Fig. 3c). In one step, the robot can move from its current
location to one of the eight adjacent locations horizontally,
vertically, and diagonally. The result of a move is uncertain.
The robot can localize itself in several locations scattered
around the environment. To reach the destination, the robot
may follow one of the long routes along the far left and right
sides of the environment or take a shortcut through one of the
bridges (shaded in light gray in Fig. 3c). Due to flood damages,
at most two bridges are still functional. The robot’s goal is to
reach the destination nodes as quickly as possible, using such
an uncertain environment map. Even in this simplified setting,
we still end up with more than 15,000 states.

d) Rock Sample:The Rock Sample problem first ap-
peared in the work on HSVI [18]. In this problem, a rover
explores an area modeled as a small grid and looks for rocks
with scientific value. The rover always knows its own position
exactly, as well as those of the rocks. However, it does not
know which rocks are valuable. The rover can take noisy long-
range sensor readings to gather information on the rocks. The
accuracy of the sensor depends on the distance between the
rover and the rocks. The rover can also sample a rock in the
immediate vicinity. It receives a reward or a penalty, depending
on whether the sampled rock is valuable.

In this problem, the environment is static, and a map with
exact rock positions is available. However, the environment
map that really matters is the one that marks the positions of
valuablerocks. This map is unknown in advance. and the rover
must infer this map from sensor readings. So this problem can
be regarded as an instance of integrated exploration.

e) Tag: The Tag problem first appeared in the work on
PBVI [10]. In Tag, the robot’s goal is to follow a target that
intentionally moves away. The robot and the target operate
in a grid environment with 29 positions in total. In one step,
they can either stay or move one of four adjacent positions
(above, below, left, and right). The robot always knows its
own position, but can observe the target’s position only if they
are in the same position. The robot pays a cost for each move
and receives a reward every time that it arrives in the same
position as that of the target. Here, the environment changes
over time due to the target motion. Thus the problem belongs
the third category.

f) Homecare: This problem models a robot following a
person around at home for caretaking purposes (Fig. 3d). It
is related to Tag, but involves a much larger number of states

and more complex environment dynamics. Imagine that an
elderly person moves around at home. His motion is non-
deterministic: he follows a fixed path (marked as a black
dashed curve in Fig. 3d), but in each time step, he may pause
or proceed along the path with equal probabilities. Along the
path, there is special location representing a bathroom, where
the person may stay for an extended duration. The person has a
call button to call the robot over for help. The call button stays
on for some uncertain duration and then goes off. The robot
gets a reward only if it arrives in time. The robot can observe
the person’s position when they are close enough. Clearly the
robot should stay close to the person in order to track his
position well and improve the chance of receiving rewards. At
the same time, it also wants to minimize movement in order
to reduce power consumption. POMDP provides a principled
way to evaluate such trade-offs.

B. Experimental Setup

We applied SARSOP to the above tasks. For each task,
we first performed long preliminary runs to determine ap-
proximately the reward level for the optimal policies and the
amount of time needed to reach it. We then ran SARSOP for
a maximum of two hours to reach this level and recorded the
resulting policy. To estimate the expected total reward of the
policy, we performed sufficiently large number of simulation
runs until the variance in the estimated value was small. For
comparison, we also ran HSVI2 on these tasks, following the
same procedure. Both algorithms are implemented in C++.
They were compiled with g++ v4.1.2. The experiments were
performed on a PC with a 2.66GHz Intel processor and 2GB
memory. For HSVI2, we used the newest software release by
its original author, zmdp v1.1.3, which is a highly optimized
implementation.

For SARSOP, theδ value for α-vector pruning was set at
1 × 10−2 for the two largest problems, Rock Sample and
Homecare, and1 × 10−4 for the rest. The performance of
SARSOP is affected by theδ value, but not sensitive to it. One
important consideration in the choice ofδ is the dimensionality
of the belief space involved,i.e., the number of states. The
rough guide that we have been using is1×10−2 for POMDPs
with about 10,000 states or more and1× 10−4 for those with
substantially fewer states. We are currently implementing an
adaptive technique to setδ automatically and will include it
in the final software release.

C. Results

The results are shown in Table I. Column 2 of the table
lists the estimated expected total rewards for the computed
policies and the 95% confidence intervals. Column 3 lists the
corresponding computation times.

For all six tasks, SARSOP obtained good approximate
solutions within the two-hour limit. In five out of the six
tasks, SARSOP substantially outperformed HSVI2, sometimes
by several times. For two tasks (Integrated Exploration and
Tag), HSVI2 was unable to reach a comparable reward level
as that of SARSOP within the two-hour time limit. Thus, for

TABLE I

PERFORMANCE COMPARISON.

Reward Time (s)
Underwater Navigation,
|S|=2,653,|A|=6,|O|=103

SARSOP 722.59± 1.30 72
HSVI2 721.45± 0.75 720
Grasping
|S|=1,253,|A|=6,|O|=96

SARSOP 320.00± 0.16 8
HSVI2 319.88± 0.14 60
Integrated Exploration
|S|=15,517,|A|=8,|O|=1,015

SARSOP (1.58± 0.03)× 106 5,400
HSVI2 (1.41± 0.02)× 106 5,400

(1.43± 0.02)× 106 7,200
Rock Sample (7,8)
|S|=12,545,|A|=13,|O|=2

SARSOP 21.27± 0.13 400
HSVI2 21.27± 0.09 250
Tag
|S|=870,|A|=5,|O|=30

SARSOP −6.13± 0.12 6
HSVI2 −7.43± 0.11 6

−6.40± 0.10 7,200
Homecare
|S|=5,408,|A|=9,|O|=928

SARSOP 16.86± 0.45 960
HSVI2 16.88± 0.37 2,880

these two tasks, we also report the reward level that HSVI2
was able to reach at the end of two hours (Table I).

On Rock Sample, SARSOP did not perform as well as
HSVI2 for a very specific reason. HSVI2 implements anα-
vector masking technique, which opportunistically computes
only selected entries in theα-vectors. This technique is
particularly beneficial here, because in Rock Sample, the
robot position is fully observed, which substantially reduces
the overall level of uncertainty involved. Furthermore, the
remaining state variables that specify the status of rocks are
indepedent, which also helps to improve the effectiveness of
masking. Without masking, HSVI2 was only able reach the
reward level of18.98±0.09 after 400 seconds of computation
time. This is worse than that of SARSOP. The effectiveness of
masking degenerates for uncertain robot movements and noisy
observations, which are the more common case in practice. For
this reason, we currently do not to incorporate masking in our
implementation.

V. CONCLUSION

Point-based algorithms have greatly improved the speed of
POMDP solution by sampling from the reachable space. This
paper presents a new point-based algorithm, SARSOP, which
exploits the notion of optimally reachable spaces to further
improve computational efficiency. We applied SARSOP to a
set of distinct robotic tasks, all modeled as POMDPs with a
large number of states. SARSOP computed good approximate
solutions to all of them in reasonable time. Further, it out-
performed one of the fastest existing point-based algorithm in
most of these tasks. These results indicate that approximating
optimally reachable spaces through sampling is an interesting
new angle to look at the problem. It has led to the more

effective sampling and pruning strategies in SARSOP.
Along with other reports in literature [2, 3, 10, 11, 14, 19],

our results indicate that with the advances in POMDP solution
algorithms, the POMDP approach is gradually becoming prac-
tical for non-trivial robotic tasks. We are currently improving
the implementation of SARSOP and expect to release it soon
as a software package athttp://motion.comp.nus.
edu.sg/projects/pomdp/pomdp.html .

Acknowledgements.We thank Yanzhu Du and Xan Huang for
helping with the software implementation. This work is supported
in part by the MoE AcRF grant R-252-000-327-112.

REFERENCES

[1] M. Hauskrecht, “Value-function approximations for partially observable
Markov decision processes,”J. Artificial Intelligence Research, vol. 13,
pp. 33–94, 2000.

[2] J. Hoey, A. von Bertoldi, P. Poupart, and A. Mihailidis, “Assisting
persons with dementia during handwashing using a partially observable
Markov decision process,” inProc. Int. Conf. on Vision Systems, 2007.

[3] K. Hsiao, L. Kaelbling, and T. Lozano-Pérez, “Grasping POMDPs,” in
Proc. IEEE Int. Conf. on Robotics & Automation, 2007, pp. 4485–4692.

[4] D. Hsu, W. Lee, and N. Rong, “What makes some POMDP problems
easy to approximate?” inAdvances in Neural Information Processing
Systems (NIPS), 2007.

[5] ——, “A point-based pomdp planner for target tracking,” inProc. IEEE
Int. Conf. on Robotics & Automation, 2008, pp. 2644–2650.

[6] L. Kaelbling, M. Littman, and A. Cassandra, “Planning and acting in
partially observable stochastic domains,”Artificial Intelligence, vol. 101,
no. 1–2, pp. 99–134, 1998.

[7] O. Madani, S. Hanks, and A. Condon, “On the undecidability of
probabilistic planning and infinite-horizon partially observable Markov
decision problems,” inProc. Nat. Conf. on Artificial Intelligence, 1999,
pp. 541–548.

[8] A. Makarenko, S. Williams, F. Bourgault, and H. Durrant-Whyte, “An
experiment in integrated exploration,” inProc. IEEE/RSJ Int. Conf. on
Intelligent Robots & Systems, 2002.

[9] C. Papadimitriou and J. Tsisiklis, “The complexity of Markov decision
processes,”Mathematics of Operations Research, vol. 12, no. 3, pp.
441–450, 1987.

[10] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An
anytime algorithm for POMDPs,” inProc. Int. Jnt. Conf. on Artificial
Intelligence, 2003, pp. 477–484.

[11] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun, “Towards
robotic assistants in nursing homes: Challenges and results,”Robotics
& Autonomous Systems, vol. 42, no. 3–4, pp. 271–281, 2003.

[12] P. Poupart and C. Boutilier, “Value-directed compression of POMDPs,”
in Advances in Neural Information Processing Systems (NIPS). The
MIT Press, 2003, vol. 15, pp. 1547–1554.

[13] M. Puterman,Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, 1994.

[14] N. Roy, G. Gordon, and S. Thrun, “Finding aproximate POMDP
solutions through belief compression,”J. Artificial Intelligence Research,
vol. 23, pp. 1–40, 2005.

[15] G. Shani, R. Brafman, and S. Shimony, “Adaptation for changing
stochastic environments through online POMDP policy learning,” in
Proc. Eur. Conf. on Machine Learning, 2005, pp. 61–70.

[16] ——, “Forward search value iteration for POMDPs,” inProc. Int. Jnt.
Conf. on Artificial Intelligence, 2007.

[17] R. Smallwood and E. Sondik, “The optimal control of partially ob-
servable Markov processes over a finite horizon,”Operations Research,
vol. 21, pp. 1071–1088, 1973.

[18] T. Smith and R. Simmons, “Heuristic search value iteration for
POMDPs,” inProc. Uncertainty in Artificial Intelligence, 2004, pp. 520–
527.

[19] ——, “Point-based POMDP algorithms: Improved analysis and imple-
mentation,” inProc. Uncertainty in Artificial Intelligence, 2005.

[20] M. Spaan and N. Vlassis, “A point-based POMDP algorithm for robot
planning,” in Proc. IEEE Int. Conf. on Robotics & Automation, 2004.

