
POSGGym: A Library for Decision-Theoretic Planning and
Learning in Partially Observable, Multi-Agent Environments

Jonathon Schwartz1*, Rhys Newbury2, Dana Kulić2, Hanna Kurniawati1

1School of Computing, Australian National University, Canberra, ACT, Australia.
2Department of Electrical and Computer Systems Engineering, Monash University, Clayton,

VIC, Australia.

*Corresponding author(s). E-mail(s): jonathon.schwartz@anu.edu.au;
Contributing authors: rhys.newbury@monash.edu.au; dana.kulic@monash.edu;

hanna.kurniawati@anu.edu.au;

Abstract
Seamless integration of Planning Under Uncertainty and Reinforcement Learning (RL) promises to bring the
best of both model-driven and data-driven worlds to multi-agent decision-making, resulting in an approach
with assurances on performance that scales well to more complex problems. Despite this potential, progress
in developing such methods has been hindered by the lack of adequate evaluation and simulation platforms.
Researchers have had to rely on creating custom environments, which reduces efficiency and makes com-
paring new methods difficult. In this paper, we introduce POSGGym: a library for facilitating planning
and RL research in partially observable, multi-agent domains. It provides a diverse collection of discrete
and continuous environments, complete with their dynamics models and a reference set of policies that can
be used to evaluate generalization to novel co-players. Leveraging POSGGym, we empirically investigate
existing state-of-the-art planning methods and a method that combines planning and RL in the type-based
reasoning setting. Our experiments corroborate that combining planning and RL can yield superior perfor-
mance compared to planning or RL alone, given the model of the environment and other agents is correct.
However, our particular setup also reveals that this integrated approach could result in worse performance
when the model of other agents is incorrect. Our findings indicate the benefit of integrating planning and
RL in partially observable, multi-agent domains, while serving to highlight several important directions for
future research. Code available at: https://github.com/RDLLab/posggym.

Keywords: Multi-agent, Planning Under Uncertainty, Reinforcement Learning, Software

1 Introduction
Decision-theoretic planning, also known as planning under uncertainty, addresses the problem of using a
dynamics model to find the optimal way to behave in uncertain environments [1, 2]. In scenarios involving a
single-agent, this is formalized by the Partially Observable Markov Decision Process (POMDP) [3, 4], which
incorporates uncertainty in the state of the environment and the stochastic outcomes of actions. Extending to
the multi-agent setting, various approaches exist [5], with the Partially Observable Stochastic Game (POSG)
[6] being one of the most general. The appeal of decision-theoretic planning lies in its mathematical rigor and
theoretical guarantees for optimal decision-making under uncertainty, vital for reliable autonomous systems in
domains like robotics [7, 8], autonomous driving [9], and security [10, 11].

Unfortunately, applying planning under uncertainty to large, multi-agent environments has remained a
challenge. Existing methods have been consistently limited by the high computational complexity of planning
in partially observable multi-agent environments, primarily due to the exponential growth in problem size with

1

https://github.com/RDLLab/posggym

Fig. 1: POSGGym is a library for planning and RL research in partially observable, multi-agent domains. It
includes a diverse set of discrete and continuous environments along with a collection of reference policies for
reproducible evaluation

planning horizon [5, 12]. Finding novel ways to improve the scaling of planning is essential if it is to be useful
for many of the real-world problems we care about solving.

Advances in deep learning [13] offer promising solutions for improving the scaling of planning. Deep learning
has been able to effectively leverage growing compute in order to solve increasingly more difficult problems
[14]. Combining deep reinforcement learning (RL) with planning, in the form of search, has already led to
remarkable achievements in multi-agent decision making in games such as Go, Chess, Shogi, Poker, and Hanabi
[15–19]. Integrating learning with planning presents an exciting opportunity for the creation of autonomous
agents capable of scaling to complex environments while robustly handling uncertainty.

This work aims to contribute to research at the intersection of learning and planning. Two key ingredients
are essential for promoting progress in this direction. Firstly, high-quality benchmark domains are necessary for
facilitating comparisons, reducing experiment times, and guiding research direction. Many recent achievements
in multi-agent research have been driven by access to such benchmarks [15, 17, 20–23]. Secondly, clear baselines
of the state-of-the-field are vital for understanding current limitations. While adjacent areas like multi-agent
RL (MARL) and games have had substantial contributions to these components [24–28], multi-agent planning
has received comparatively less attention.

In this paper, we introduce POSGGym, a research library for planning and RL in partially observable, multi-
agent environments. POSGGym models environments using the POSG framework and supports both discrete
and continuous domains. It includes implementations of established and newer planning benchmarks, all under
a unified API that is compatible with the existing ecosystem of MARL libraries [24, 29–32]. Additionally,
POSGGym provides a reference set of policies, a crucial ingredient for multi-agent research. These policies and
benchmark environments can help save researcher time and enable reproducible evaluations.

POSGGym enables extensive empirical investigation into current state-of-the-art decision-theoretic planning
methods and their combination with RL. We evaluate four of the current state-of-the-art planners and combined
planning with RL across diverse environments and populations of other agents. Our evaluation encompasses
performance against both known and unknown co-player populations, allowing us to study various properties
of each method including generalization to novel partners.

The key contributions of this paper are:

1. We introduce POSGGym, a new environment and agent library for planning and RL research in partially
observable, multi-agent domains.

2. We use POSGGym to compare the performance of existing planning and RL methods across a range of
environments and when paired with known and unknown partners.

3. Demonstrate how decision-theoretic planning and RL can be combined effectively to get better performance
than either method alone.

4. Study and discuss some of the failure modes for existing planning and combined planning plus RL
approaches, and propose future research directions.

2

2 Background

2.1 Partially Observable Stochastic Games
Partially Observable Stochastic Games (POSG) are a foundational mathematical framework for modelling
scenarios involving multiple agents interacting within a stochastic, partially observable environment. They
generalize various other formal decision-making models. A Partially Observable Markov Decision Process
(POMDP) is a POSG with a single agent [3, 4], while a decentralized POMDP (Dec-POMDP) [12] is a fully
cooperative POSG where all agents share a reward function. A multi-agent Markov decision processes (MMDP)
[33] is a fully cooperative, fully observable POSG. While a Markov game (MG), also known as a stochastic
game, is a fully observable POSG [34]. The generality of POSGs has led to their wide use in decision-theoretic
planning and MARL.

Formally, a POSG is a tuple M = ⟨I,S, S0, A⃗, O⃗, T ,Z,R⟩ consisting of N agents indexed I = {1, . . . , N},
a set of Markov states of the environment S, an initial state distribution S0 ∈ ∆(S)1, the joint action space A⃗ =

A1×· · ·×AN , the joint observation space O⃗ = O1×· · ·×ON , a state transition function T : S×A⃗×S → [0, 1]
specifying the probability of transitioning to state s′ given joint action a⃗ was performed in state s, the joint
observation function Z : S × A⃗ × O⃗ → [0, 1] specifying the probability of joint observation o⃗ after performing
joint action a⃗ and ending up in state s′, and a reward function R : S × A⃗ → RN defining the reward each
agent receives when joint action a⃗ is performed in state s. Combining T ,Z,R into a single function produces
a generative model G which returns the next state, joint observation, and joint reward, given the current state
and joint action ⟨s′, o⃗, r⃗⟩ ∼ G(s, a⃗).

At each step, each agent i ∈ I simultaneously performs an action ai ∈ Ai and receives an observation
oi ∈ Oi and reward ri ∈ R. Each agent has no direct access to the environment state or knowledge of the
other agent’s actions and observations. Instead, they must rely only on information in their action-observation
history up to the current time step t: hi,t = ⟨oi,0ai,0oi,1ai,1 . . . oi,t−1ai,t−1oi,t⟩. The set of all time t histories
for agent i is denoted Hi,t. Agents select their next action using their policy πi which is a mapping from their
history hi (or belief, see Section 2.2) to a probability distribution over their actions, where πi(ai|hi) denotes
the probability of agent i performing action ai given history hi. The goal of each agent i is to maximize its
total expected return given by Ji = E

[∑∞
t′=t γ

t′−tri,t′
]
, where γ ∈ [0, 1) is a discount factor. Importantly, each

agent’s reward at each step depends on the actions taken by the other agents present in the environment.

2.2 Decision-Theoretic Planning
Decision-theoretic planning is a broad term, in this paper we consider it as the field of research and methods
concerned with finding the optimal way to behave in uncertain environments by explicitly modeling the uncer-
tainty arising from partial observability and stochastic outcomes of actions [1, 2, 4]. For this reason, it is often
also referred to as planning under uncertainty. In the multi-agent setting, uncertainty about the other agent –
their policy, actions, and internal state – must also be considered [5, 35]. The various methods differ primar-
ily along the axis of whether they aim to find a policy for all agents in the environment [36] (e.g., a team of
robots), or instead focus on controlling a single self-interested agent [37] (e.g. a robot that must operate around
humans). The POSG framework, and thus POSGGym, accommodates research in both directions.

In this work, we concentrate on the problem of operating a self-interested agent in an environment shared
with independent co-players. In cooperative environments, this is analogous to the problem of ad-hoc teamwork
[38, 39]. Throughout this paper, we use i to denote the planning agent, j ̸= i to denote a single other agent,
and −i = I \ i to denote the set of all other agents.

Central to planning is the use of dynamics models of the environment. For this paper, we assume the agent
has access to a generative model G of the underlying POSG, which it can use to sample next states, observations,
and rewards. G is stochastic in nature, arising from the uncertainty in the environment dynamics, where multiple
possible outcomes may be associated with each action, observation, and state transition. This is compared to
having access to the full model which provides the full transition and observation probabilities and generally
can be impractical to implement for environments with large state and observation spaces. Additionally, due
to partial observability, the agent does not have direct access to the current state of the environment. Instead,
it needs to maintain a belief state, representing a probability distribution over possible states based on past
observations and actions.

1We use S0 to denote the initial state distribution to distinguish it from the initial belief of an agent b0 which in the multi-agent setting
can be a distribution over more than just environment states.

3

2.2.1 Beliefs

At the core of planning under uncertainty lies an agent’s belief, representing a distribution over possible states
the agent could currently be in. Importantly, what constitutes a state varies depending on the context. In single-
agent POMDPs, the belief b is a distribution over environment states b ∈ ∆(S) and encapsulates uncertainty
in the physical state of the environment s ∈ S. In the multi-agent setting, the policies and internal states of
the other agents must also be considered. Multi-agent frameworks differ based on how they represent the other
agents’ policies and internal states. For instance, the Interactive-POMDP (I-POMDP) [37] adopts a recursive
reasoning approach, modeling other agents’ policies as solutions to lower-level I-POMDPs and their internal
state as lower level beliefs over environment states and possibly the beliefs of the other agents. More generally,
it suffices to consider the space of possible policies π−i ∈ Π−i and action-observation histories h−i,t ∈ H−i,t of
the other agents [6, 37], where the space of policies could be a discrete set of policies [6, 37] or a distribution
over continuous parameters [40]. For the purpose of this work, a belief bi,t ∈ ∆(S ×Π−i ×H−i,t) encompasses
the environment state s ∈ S, other agents’ policies π−i ∈ Π−i, and their histories h−i,t ∈ H−i,t, where the
other agents’ policy space is a discrete set.

The planning agent uses its belief bi,t to select its next action according to its policy πi and then updates
its belief given the next observation from the environment. The initial belief bi,0 is formed based on the initial
environment state distribution and prior ρ over other agents’ policies: bi,0(s, π−i, h−i,0) = S0(s)ρ(π−i). In this
work ρ is a uniform distribution, unless otherwise stated. Subsequent beliefs are computed based on the agent’s
most recent action ai,t and observation oi,t using the well-known Bayes filter: bi,t+1(st+1, π−i,t+1, h−i,t+1) =
Pr(st+1, π−i,t+1, h−i,t+1|bi,t, ai,t, oi,t). Exact representation and computation of beliefs are intractable for all
but small problems due to the curse of state dimensionality. Thus, modern planners rely on approximate
methods.

As an example of how beliefs can be used to adapt online to the other agent, in a driving scenario, if agent
i observes the other agent −i barely slowing down when entering an intersection, this observation provides
information about which type of policy π−i they are using. If the planning agent’s belief includes both an
’aggressive’ policy, that tends to go fast through intersections, and a ’cautious’ policy, that slows down before
entering an intersection, observing the other agent speeding through an intersection would increase the prob-
ability assigned to the aggressive policy. The planning agent can then adapt its future actions accordingly, for
example, by slowing down to maintain a larger distance to the aggressive agent’s vehicle.

2.2.2 Monte Carlo Planning

Monte Carlo planning using Monte Carlo Tree Search (MCTS) [41, 42] and particle filters [43] is the dominant
paradigm for planning in large problems. Rather than maintaining exact beliefs, beliefs are approximated using
a particle filter with Monte Carlo updates. To compute the policy for the current belief, MCTS constructs a
search tree of nodes online, where each node is a belief, effectively searching over the space of beliefs.

MCTS involves estimating the value of each action from the current belief via a series of simulated episodes.
Each simulation starts from a state sampled from the current belief and proceeds in three stages: selection,
expansion, and backpropagation.

1. Selection: the current search tree is traversed using an exploration policy until a leaf node of the tree is
reached. The exploration policy balances exploring new regions of the search space with exploiting known
high value regions. The two commonly used exploration policies are UCB (Upper Confidence Bound) [44],
and PUCB ("Predictor" + UCB) [45]. UCB selects actions as a function of the action’s current estimated
value and number of times it has been previously selected, while PUCB extends this to include an additional
bias based on a search policy.

2. Expansion: upon reaching a leaf node, it is evaluated and expanded by adding it to the tree and adding
edges for each action. Evaluation involves estimating the node’s value. This is typically done through Monte
Carlo rollouts or using pre-computed value functions.

3. Backpropagation: the nodes and edges visited along the simulated trajectory are updated by propagating
the value estimate from the leaf node back-up to the root node of the tree. This includes incrementing the
visit count for each node, for use by the exploration policy.

Upon completion of the search, the planning agent selects the action from the root node based on visits
and values, typically by choosing the action with the largest value, most visits, or sampling from a distribution
computed from these values. Following the action being performed in the environment and the planning agent

4

receiving its next observation, the current belief of the agent is updated and set as the new root node of the
tree. The search process is then repeated.

2.3 Reinforcement Learning
Reinforcement Learning (RL) [46] is another approach for solving sequential-decision making problems.
Whereas planning uses a dynamics model and explicit beliefs, RL focuses on learning a policy through inter-
actions with the environment or a model. Deep RL in partially observable environments typically circumvent
explicit beliefs by using recurrent networks (RNNs) [47] such as LSTMs [48] to represent the policy [49]. These
RNNs can learn implicit beliefs, in that they learn representations of the sufficient statistics of the state of
the world given the agents action-observation history. However, these learned implicit beliefs do not permit
planning since search in planning requires explicitly sampling from beliefs in order to simulate possible future
trajectories. Instead, prior work has combined RL with search by using a policy trained with deep RL as the
search policy within MCTS using PUCB [15–17, 19].

An important question when applying RL in multi-agent environments is how to model the other agents
in the environment? This question has given rise to a range of multi-agent training schemes being developed.
One of the most well known is self-play [50] where the RL agent plays against itself, using the same policy for
all agents in the environment. This has proven to be very effective, especially for two-player, zero-sum games
[15, 16, 51, 52], or settings where there is centralized learning for decentralized execution [19]. While these
results are very impressive, there is evidence that purely self-play agents can be prone to over-fitting, resulting
in exploitable agents [53, 54].

Another approach is population-based training where there are multiple independent policies that are trained
simultaneously and paired up according to some schema [53, 55, 56]. This type of training has been used to
generate superhuman performance in large, complex, partially observable environments like StarCraft 2 [21] and
Dota [20]. Over the years various schemas have been proposed including those based on cognitive hierarchies
and nested reasoning [53, 57], playing against older versions of a policy [20, 50].

Finally, other methods instead use a fixed model of the opponent, typically either learned from data or
handcrafted [58]. A good example of this is to generate a model of human behaviour from data and then use
RL to learn a policy that acts well with respect to this model. This technique was crucial for generating the
initial policies for superhuman agents in competitive domains Go [15] and Starcraft 2 [21]. More, recently it has
been used to produce human level agents when playing against humans in the game of Diplomacy [59], which
requires both cooperation and competition. This is the approach we use in this work, where the RL agent has
access to a set of possible policies for the other agent during training, and tasked with learning a best-response
(BR) to this set.

3 Related Work

3.1 Multi-Agent Libraries
In recent years there has been a proliferation of MARL research libraries. This includes general suites such
as PettingZoo [24], Melting Pot [25] and JaxMARL [60] which provide a standard API and a large collection
of environments. Other libraries instead focus on specific domains such as StarCraft [26, 27], massively multi-
agent online games [61], environments with hundreds to millions of agents [62], drones [63], autonomous driving
[64, 65] and robotics [66–68]. While all the aforementioned libraries offer unique challenges they are designed
specifically with deep MARL in mind and so have no or limited model support and/or focus on limited
domains, making them hard to use for research in planning under uncertainty. In contrast, POSGGym explicitly
decouples the model and environment in its API, making it easier for researchers to use the environments for
planning and/or MARL. This decoupling also enables experiments evaluating the impact of model inaccuracy,
by allowing researchers to easily use models that are different from the environment.

A number of libraries focusing on turn-based games have also been developed, including OpenSpiel [28],
rlcard for card-games [69], and Pgx for accelerator-supported board games [70]. Unlike most MARL libraries,
these libraries support search by exposing the environment model in their APIs. However, each library is based
on the Extensive Form Games formalism [71] with a focus on turn-based games, such as classic card and board
games.

Finally, there have been a couple of libraries designed for multi-agent planning. The Multi-Agent Decision
Process Toolbox (MADPToolbox) [72] focuses on facilitating planning research and includes a collection of
planning algorithms and benchmarks domains. However, the primary focus of MADPToolbox has been on

5

planning algorithms for discrete Dec-POMDPs. Additionally, the design of the library makes it difficult to
integrate with the modern ecosystem of deep learning and RL libraries. AdLeap-MAS [73] is a more recent
library which focuses on ad-hoc reasoning, however it includes a very limited set of environments.

3.2 Multi-Agent Planning
In this work we empirically evaluate existing state-of-the-art methods for planning under uncertainty in large
partially observable environments where the task is to control a single self-interested agent. A closely related
problem is that of ad-hoc teamwork [39] in cooperative environments where the goal is to design an agent that
can adapt to novel teammates. Proposed methods in this area include those based on stage games [74], Bayesian
beliefs [75, 76], types with parameters [40], and for the many agent setting [77]. All these methods use MCTS
but are limited to environments where the state and actions of the other agents are fully observed, so are not
applicable in our settings. For the the more general setting of type-based reasoning, Schwartz et al. [78] propose
POTMMCP that incorporates a meta-policy for guiding search. POTMMCP was shown to outperform related
methods across a range of cooperative, competitive, and mixed environments. A number of other works have
focused on planning in more restricted settings. This includes strictly cooperative [79, 80] and competitive [81]
environments, and settings where there is centralized control [82].

Several Monte Carlo planning methods have been proposed for solving large I-POMDPs. This includes
methods based on finite-state automata [83] and for systems with communication [84]. However, most relevant
for our setting are IPOMCP [85], which extends the single-agent POMCP [42] to solving I-POMDPS, and
INTMCP [86] which uses nested-MCTS. These two methods represent the current state-of-the-art planning
methods when it comes to solving large, general I-POMDPs.

3.3 Combined Planning and Learning
Combining search with RL has been an important part of superhuman performance in games. Self-play RL
and MCTS have been combined to achieve beyond expert performance in two-player fully-observable zero-sum
games with both a known [15, 16] and learned [87] environment model. Similar methods have been applied
to zero-sum imperfect-information games [17, 18, 52, 88], as well as cooperative games where there is prior
coordination for decentralized execution [19, 89]. Methods combining MCTS and RL in games for training a
best-response policy against a distribution over policies [90] have also been proposed.

While combining RL with planning has shown success in fully observable settings [15, 16]) and partially
observable settings with exact [17, 19, 52] or learned belief representations [88, 89], to the best of the authors’
knowledge our work provides the first comprehensive evaluation of combining RL with particle-based planning
methods. This distinction is important as particle-based methods are currently a widely used approach for
planning in large partially observable environments where exact belief computation is intractable. Our results
reveal both the potential benefits and limitations of this combination, particularly when dealing with model
inaccuracy.

4 POSGGym
POSGGym has been developed with the following goals in mind:

• Provide a general API for environments, models, and reference agents that supports both planning and RL
• Provide implementations of a range of established and newer planning benchmark environments
• Provide a diverse set of co-player policies (reference agents) for implemented environments
• Be similar to Gym and PettingZoo APIs and compatible with the main RL algorithm libraries

The aim of POSGGym is to streamline planning and learning research in POSGs, with a particular empha-
sis on planning, since this is currently lacking in existing research libraries. To accomplish this, POSGGym
uses a general yet user-friendly API, and includes a diverse collection of environments and reference agents.
POSGGym’s API is based on those of the Gym [91, 92] and PettingZoo [24] libraries, as these are widely used
by the RL community. It has the additional benefit of making it simple to integrate POSGGym with the many
MARL algorithm libraries that are currently compatible with PettingZoo, e.g. [29–31].

4.1 API Design
The POSGGym API has three main components: environment, model, and agents (Figure 2).

6

Environment

observations
rewards

posggym.Env actions

Agent PolicyAgent PolicyAgent Policy
posggym.agents.Policy

Environment Model
posggym.POSGModel

Environment Model
posggym.POSGModel

Fig. 2: POSGGym’s high-level architecture includes environment, model, and agent policy APIs. Agents
interact with the environment by selecting actions according to their policy. The environment maintains a state
and uses a model internally to update this state and generate observations and rewards for the agents. Each
agent policy has access to its own model for planning. Researchers have full control over which model the agent
has access to, so the agent’s model may be the same or different to the environment’s model.

4.1.1 Environment API

The POSGGym environment API, depicted in Figure 3a, closely follows the structure of PettingZoo’s parallel
environment API (Figure 3b), however, with certain aspects aligning more closely with the Gymnasium API
(Figure 3c).

import posggym

env = posggym.make("PursuitEvasion -v0", render_mode="human")
observations , infos = env.reset(seed =42)

for _ in range (1000):
actions = {i: policies[i](observations[i]) for i in env.agents}
observations , rewards , terminations , truncations , all_done , infos = env.step(actions)
if all_done:

observations , infos = env.reset()

env.close()

(a) POSGGym

from pettingzoo.butterfly import pistonball_v6

env = pistonball_v6.parallel_env(render_mode="human")
observations = env.reset(seed =42)

for _ in range (1000):
actions = {i: policies[i](observations[i]) for i in env.agents}
observations , rewards , terminations , truncations , infos = env.step(actions)
if not env.agents:

observations = env.reset()

env.close()

(b) PettingZoo

import gymnasium as gym

env = gym.make("LunarLander -v2", render_mode="human")
observation , info = env.reset(seed =42)

for _ in range (1000):
action = policy(observation)
observation , reward , terminated , truncated , info = env.step(action)
if terminated or truncated:

observation , info = env.reset()

env.close()

(c) Gymnasium

Fig. 3: Environment APIs

7

At each timestep, each agent provides an action, which collectively form a joint action passed to the
step function. This function updates the state of the environment and returns observations, rewards,
terminations, truncations, all_done, infos. Each of these return values (except all_done) is a mapping
from the ID of the agent to their respective return value. The step function mirrors PettingZoo’s step function,
with the addition of all_done, which indicates when all agents in the environment have reached a terminal
state. Similarly, the reset method mirrors PettingZoo’s and resets the environment to a starting state and
returns an observation and info for each active agent. The state, observation, and action spaces utilize the
same underlying classes as Gymnasium and PettingZoo, greatly simplifying compatibility across libraries. The
render and close functions operate identically to Gymnasium: render provide visual representation of the
current state of the environment, while close closes the environment and performs any necessary clean-up.

POSGGym’s environment API differs from the PettingZoo parallel environment API in two key aspects:
the make function for environment initialization, and the inclusion of all_done in the step method’s return
values. The use of the make function aligns more closely with the design of Gymnasium, offering users more
convenience and control. For example, in Figure 3 in the PettingZoo API the user has to explicitly import
the pistonball_v6 module, whereas in POSGGym and Gymnasium the make function only requires the name
of the environment. This makes it more convenient to use the exact same code for different environments,
since there is no need to explicitly change which code is imported. The inclusion of all_done differs from
both PettingZoo and Gymnasium. This addition aims to simplify the tracking of agent termination during
an episode, which can be non-trivial in open environments where the agents that are active may change over
time. It also accounts for scenarios where agents can leave or join the environment within a single episode. For
example, without the all_done output, the user has to track which agents are done and then check at each
step whether all agents are finished before ending the episode. POSGGym instead puts the burden of handling
this logic on the environment developer where it can be written once and then shared by all users.

To make integration with existing MARL libraries easier, POSGGym provides a PettingZoo wrapper
class that enables the conversion of any POSGGym environment into an equivalent PettingZoo parallel API
environment. By using this wrapper, any POSGGym environment can be used seamlessly with any library that
supports the PettingZoo API.

4.1.2 Model API

POSGGym’s model API serves as the distinguishing feature between POSGGym and existing environment
libraries. The model API, shown in Figure 4, provides access to a generative model of the environment, which
can be utilized during planning. The design of the model API aims to closely resemble the environment API,
with the exception that the majority of methods take an environment state as an additional input. The main
methods are as follows:

• sample_initial_state – samples an initial environment state
• sample_initial_obs – samples initial observations for each agent given a state
• get_agents – returns the IDs of agents that are active in a given state
• step – similar to the environment step function, but also returns the next state. It takes both a state and

joint actions as arguments
• seed – sets the random seed for the model

Models in POSGGym are stateless, except for their random seed. This is the key difference when comparing
the model and environment APIs. Models have no internal state and thus require a state as input to perform
a step, while the environment maintains an internal state which it evolves with each step. In fact, the default
implementation of the Environment API in POSGGym is merely a wrapper that manages the state on top of
an underlying model class.

Separating out the underlying model from the environment is important for a number of reasons. Firstly,
planning algorithms require a model. Having a clear separation in the API makes it clear what can be used for
planning (model API) and what is the real environment outside of the planning agent’s control (environment
API). Secondly, it provides greater flexibility in the types of research that can be done. For example, to study
planning with inaccurate models one can provide agents with models that are different from the environment,
say with varying initial parameters or simplified dynamics (we cover this in greater detail in Section 4.4).

In addition to the generative model functionality described above, POSGGym defines the
POSGGym.POSGFullModel API, which extends the POSGGym.POSGModel class to include all components of the
formal POSG definition. This extension allows POSGGym to be used for defining models for algorithms that

8

require the full model, rather than just a generative model. Specifically, the POSGGym.POSGFullModel includes
the following additional methods:

• get_initial_belief – returns the initial state distribution S0

• transition_fn – defines the state transition function T : S × A⃗ × S → [0, 1]
• observation_fn – defines the joint observation function Z : S × A⃗ × O⃗ → [0, 1]
• reward_fn – defines the joint reward function R : S × A⃗ → RN

import posggym

env = posggym.make("PredatorPrey -v0")
model = env.model
model.seed(seed =42)

state = model.sample_initial_state ()
observations = model.sample_initial_obs(state)

for t in range (50):
actions = {i: policies[i].step(observations[i]) for i in model.get_agents(state)}
timestep = model.step(state , actions)

timestep attribute can be accessed individually:
state = timestep.state
observations = timestep.observations

Or unpacked fully
state , observations , rewards , terminations , truncations , all_done , infos = timestep

if timestep.all_done:
state = model.sample_initial_state ()
observations = model.sample_initial_obs(state)

Fig. 4: POSGGym Model API

The full model definition is not included in the main POSGGym.POSGModel model class due to the difficultly
of implementing full models in environments with very large state, action, or observation spaces and complex
dynamics. In such cases, it is typically more practical and common to define a generative model that can be
used for sample-based planning approaches like MCTS [42, 93].

4.1.3 Agent API

POSGGym includes a collection of reference policies for many of its environments. Access to these policies is
done through the Agent API.

In this context it is important to distinguish between an agent and a policy. At a high-level, a reference
policy πi represents a fixed policy that maps from an agent’s action-observation history to its actions. Within
each environment, there exists a predefined number of agents N who interact within the environment. For
each episode, each agent i ∈ 1, . . . , N has an associated policy πi. In certain environments, such as symmetric
environments where all agents are equivalent, it is possible for multiple agents to use the same policy. For
example, in the game Rock, Scissors, Paper both agents could use the same policy of always playing "rock".

The goal of the Agent API is to offer a diverse collection of high-quality reference policies that can be
leveraged for research, including for testing, training, and evaluation. As we demonstrate in Section 5, the
policies can be used to measure generalization by holding-out the policies for evaluation only, with no use
of the policies during RL training or within the planning algorithm (for other examples see [20, 21, 25, 55]).
Alternatively, the policies can be used during planning, for example by using the policies to guide search
[78]. Providing a set of high-quality reference policies enables many possibilities for research, helps boost
research efficiency, and makes it easier to perform standardized comparisons. This is particularly valuable in
complex, partially-observable environments where generating policies can be especially challenging, requiring
time, knowledge, and often access to substantial computing resources.

POSGGym’s Agents API, depicted in Figure 5, follows a similar design to the Environment API. Its key
methods include make, step, and reset. The make function initializes a new instance of a policy, from the
policy’s unique ID, the environment model, and the ID of the agent the policy will be used for. It returns an
instance of the POSGGym.agents.Policy class, the main Agent API class, which has two main methods: reset
and step. reset sets the policy to its initial state, and optionally configures the random seed via the seed

9

argument. step updates the policy with the latest observations for the policy’s agent and returns the agent’s
next action.

import posggym
import posggym.agents as pga

env = posggym.make("PursuitEvasion -v0", grid="16x16")
policies = {

"0": pga.make("PursuitEvasion -v0/grid =16x16/klr_k1_seed0_i0 -v0", env.model , "0"),
"1": pga.make("PursuitEvasion -v0/shortestpath -v0", env.model , "1"),

}

seed = 42
observations , infos = env.reset(seed=seed)
for policy in policies.values ():

seed += 1
policy.reset(seed=seed)

for _ in range (1000):
actions = {i: policies[i].step(observations[i]) for i in env.agents}
observations , rewards , terminations , truncations , all_done , infos = env.step(actions)
if all_done:

observations , infos = env.reset()
for policy in policies.values ():

policy.reset ()

env.close()
for policy in policies.values ():

policy.close()

Fig. 5: POSGGym Agent API

When tackling POSGs, a critical consideration is the requirement for policies to maintain an internal state
to handle the partial observability of the environment. As discussed in Sections 2.2.1 and 2.3, approaches vary:
some utilize explicit beliefs where agents maintain and update a probabilistic representation of the unobservable
features of the environment, while others rely on implicit beliefs that leverage learned representations or neural
network architectures to capture relevant information from observations. Incorporating these crucial elements
into decision-making allows policies to exhibit more sophisticated and adaptive behaviors within complex
environments. To provide support for flexible internal states, the POSGGym.agents.Policy class API also
includes a number of additional methods that provide information and finer-grained control over the policy.
These methods include:

• get_initial_state - returns the initial state of the policy. For example, the initial belief or initial hidden
RNN state.

• get_next_state - returns the next policy state, given the current policy state and the next observation.
• sample_action - sample an action given a policy state
• get_pi - get the distribution over actions given a policy state
• set_state - set the internal state of the policy
• get_state - get the internal state of the policy
• get_state_from_history - unrolls the policy to get its state given an action-observation history.

All together, the API provides enough control that the policy can be used for evaluation using the step
method, or for planning using the finer-grained control methods like get_next_state and sample_action.

4.2 Environments
POSGGym currently offers a collection of 14 environments. These environments have been used in multi-agent
research in various forms, with most existing in paper descriptions, across disparate programming languages,
some in unmaintained research code, and others in MARL libraries with no model support. Table 1 shows the
complete list of environments, along with some of their properties and the multi-agent concepts they involve. For
detailed explanations of each environment, we refer the reader to POSGGym’s documentation2. Our intention
is to expand the range of environments based on community demand and actively encourage contributions from
the community. To facilitate this, we have developed comprehensive documentation and tutorials to streamline
the process of adding new environments.

2Documentation available at: https://posggym.readthedocs.io/

10

https://posggym.readthedocs.io/

Table 1: POSGGym environments, their properties, and the multi-agent concepts they involve. Related prop-
erties are grouped by row color

Classic Grid-World Continuous

M
A

B
C

M
A

T
ig

er

R
P

S

C
R

LB
F

T
w

o
P
at

hs

U
A
V

D
ri

vi
ng

P
re

da
to

r
P

re
y

P
ur

su
it

E
va

si
on

D
ri

vi
ng

P
re

da
to

r
P

re
y

P
ur

su
it

E
va

si
on

D
T

C

Cooperative x x x x x x
Mixed x x x x x x
Competitive x x x x x
Symmetric roles x x x x x x x x x x
Asymmetric roles x x x x
Discrete Actions x x x x x x x x x x x x x x
Continuous Actions x x x x
Discrete Observations x x x x x x x x x x
Continuous Observations x x x x

P
ro

p
er

ti
es

Pixel Observations x x x x x x

Temporal Coordination x x x x x x x x
Spacial Coordination x x x x x x x
Reciprocity x
Fair Resource Sharing x x x x
Deception x x x x x
Convention following x xC

on
ce

p
ts

Nested-Reasoning x x x x x x

POSGGym’s API is designed to support arbitrary numbers of agents, however the current version of the
library focuses on environments with 2-10 agents. This focus is motivated by several factors. First, the few-
agent setting presents distinct research challenges that differ from many-agent scenarios, particularly around
agent modeling and belief updates. Agent modeling methods like recursive reasoning [35, 37] - which are
crucial for many real-world applications - become intractable or require different approaches when scaled to
hundreds or thousands of agents. Second, many practical applications, such as human-robot interaction [94],
naturally involve a small number of agents. Finally, several high-quality libraries already exist for many-agent
research, including MAgent [62], Neural MMO [61], and GigaStep [63]. POSGGym complements these libraries
by providing comprehensive support for planning and learning research in the few-agent setting. Extending
POSGGym to involve many-agent environments would simply require implementing such an environment using
the general POSGGym API.

4.2.1 Classic

POSGGym includes several well-known problems that have been used extensively in planning and multi-agent
research. These include Multi-Access Broadcast Channel (MABC) [6, 95–97], Multi-Agent Tiger [37, 83, 98–
100], and Rock-Paper-Scissors. These problems encompass cooperative, mixed, and competitive scenarios,
respectively, and support discrete actions and observations. Due to their smaller size and well-defined charac-
teristics, some versions of these problems have known provably optimal solutions. This makes them useful for
debugging and for fine-grained analysis of algorithms. POSGGym offers full model definitions for all the classic
problems currently implemented in the library.

4.2.2 Grid-World

Seven widely used discrete grid-world problems are also provided by POSGGym. These problems encompass a
variety of scenarios, including Cooperative Reaching (CR) [101, 102], Level Based Foraging (LBF) [68, 102–105],
Two Paths [86], Unmanned Aerial Vehicle (UAV) [83, 100], Driving [78, 106, 107], Predatory Prey [78, 108–
111], and Pursuit Evasion [78, 86, 112]. The current selection of problems was chosen to provide a diverse

11

range of cooperative, mixed and competitive environments, as well as symmetric and asymmetric roles. Each
environment is represented as a grid-world with discrete observations and actions.

4.2.3 Continuous

POSGGym also offers four 2D continuous problems. This includes adaptations of three grid-world environ-
ments: Driving, Predator Prey and Pursuit Evasion. For these environments the dynamics of the agents are
modeled using a simple non-holonomic unicycle model, where agents are controlled by both angular and linear
velocities. PyMunk [113] is employed as the physics engine to support these dynamics. Observations incorpo-
rate sensors that emit from an agents position in a circular pattern at a fixed distance. This approach aligns
with the observation model used in PettingZoo’s WaterWorld environment [114]. The fourth environment is the
Drone Team Capture (DTC) environment [115, 116], which simulates a cooperative pursuit-evasion scenario.
POSGGym’s implementation of DTC closely adheres to the original paper, with enhancements to accommodate
partial observability, such as limited sight distance.

4.3 Reference Agents
POSGGym currently offers reference agents for the majority of its environments. These agents encompass a
combination of handcrafted heuristic policies and policies trained using various MARL algorithms. For instance,
a number of grid-world and continuous environments include deep RL policies trained via self-play and K-
Level Reasoning [57]. Additionally, handcrafted policies previously used in Level-Based Foraging [40, 104] and
DTC [116–118] are included. For detailed information on the training methods for each policy, please refer
to Appendix A. To access the comprehensive and up-to-date list of available policies, consult the library
documentation.

4.4 Environment and Model Customization and Control
POSGGym’s Environment and Model API’s support customization via parameter-based modification of the
underlying environment and model. Currently, all environments except for Rock-Paper-Scissors accept param-
eters which control various properties of the environment such as number of agents, observation distance, and
environment layout. As developers of the library, we aimed to provide some reasonable default settings for each
environment, but the API supports customization of these parameters to suit the user’s requirements. The
library documentation provides up-to-date information about the parameters available for each environment
and what each of them does.

This flexibility enables researchers to test the generalization capabilities of planning and learning approaches
under different environment configurations. For example, testing a planning method in larger and larger envi-
ronments, or under different levels of observability. Additionally, by specifying different parameters for the true
environment and the environment model that each policy has access to, POSGGym’s API enables users to
evaluate the robustness of algorithms to model inaccuracy (Figure 6).

4.5 Computational Requirements and Performance
POSGGym is designed to be lightweight, requiring only a single CPU for running environments at hun-
dreds to thousands of steps per second (Table 2). In practice the performance bottleneck for experiments
becomes policy computations of the planning or deep learning algorithm that is being tested. To help allevi-
ate this in some cases, POSGGym provides utilities supporting vectorized execution of environments via the
posggym.vector.SyncVectorEnv wrapper. This allows for batched computation which can greatly speed up
training times when using deep learning based methods.

5 Experiments
We used POSGGym to empirically evaluate planning, RL, and combined planning plus RL methods across
diverse environments. The goal of our experiments was to investigate current state-of-the-art planning under
uncertainty methods and compare these with integrated RL and planning. Our experiments serve an addi-
tional purpose of providing baseline results and algorithm implementations for POSGGym to facilitate future
research3.

Some questions we hoped to answer in our experiments:

3Algorithm implementations and experiment code is available at: https://github.com/RDLLab/posggym-baselines

12

https://github.com/RDLLab/posggym-baselines

import posggym
import posggym.agents as pga

true environment with blocks
true_env = posggym.make(’PredatorPrey -v0’, world="10 x10Blocks")

model of the environment without blocks
policy_model = posggym.make(’PredatorPrey -v0’, world="10x10").model

policies = {
Allow policy to interact with the policy model only
"0": MyPolicy(model=policy_model , agent_id="0"),
Other agents can have correct (true_env.model) or incorrect (policy_model) model
"1": pga.make("PredatorPrey -v0/H1-v0", model=policy_model , agent_id="1"),

}

observations , infos = true_env.reset ()
for policy in policies.values ():

policy.reset()

for t in range (50):
agents can use policy model internally , but actually interact with true environment
actions = {i: policies[i].step(observations[i]) for i in true_env.agents}
observations , rewards , terminations , truncations , all_done , infos =
true_env.step(actions)
if all_done:

observations , infos = true_env.reset()
for policy in policies.values ():

policy.reset ()

true_env.close()

Fig. 6: Model and environment customization in POSGGym. This example also shows how POSGGym can
be used to evaluate a policy’s robustness to model inaccuracy by giving the policy access to a model initialized
using different parameters than the true environment.

Table 2: Steps per second for different POSGGym environments running on a single Intel® Core™ i7-10750H
CPU @ 2.60GHz with 16 GB RAM.

Environment Environment Type Steps/s

MultiAccessBroadcastChannel-v0 Classic 59370.13
MultiAgentTiger-v0 Classic 63343.43
RockPaperScissors-v0 Classic 76395.78
Driving-v0 Grid-World 12128.70
DrivingGen-v0 Grid-World 1997.45
LevelBasedForaging-v2 Grid-World 20447.42
PredatorPrey-v0 Grid-World 9067.80
PursuitEvasion-v0 Grid-World 15427.85
TwoPaths-v0 Grid-World 27268.60
UAV-v0 Grid-World 43672.70
DrivingContinuous-v0 Continuous 551.53
DroneTeamCapture-v0 Continuous 1627.19
PredatorPreyContinuous-v0 Continuous 479.37
PursuitEvasionContinuous-v0 Continuous 481.14

• How does the performance of planning and RL methods compare across various settings?
• How well does each method generalize when faced with novel partners?
• How effective is combining existing planning methods with RL?

5.1 Experiment Setup
In our experiments we control a single planning agent in an environment with one other agent with unknown
behavior. We focus on the Bayesian learning, also known as type-based reasoning [119], setting where the
planning agent maintains a belief over a set of possible policies P , or "types", for the other agent. The goal of
the planning agent is to choose actions that maximize its own total expected reward given its beliefs about the

13

Planner/Learner

Planning Population
Used during planning/training

Agent Policy
posggym.agents.Policy

Agent Policy
posggym.agents.Policy

Agent Policy

posggym.agents.Policy

Environment Model

posggym.POSGModel

Environment

posggym.Env

Test Population
Separate, possible different to

Planning Population

Agent Policy
posggym.agents.Policy

Agent Policy
posggym.agents.Policy

Agent Policy

posggym.agents.Policy

action

observation
reward

action

observation
reward

Fig. 7: High level experimental setup. During planning/training, each planning and RL method has access to
the environment model and a planning population of policies for the other agent Pplan. Each method is then
evaluated against a separate, possibly different population of policies Ptest. In our experiments we have two
populations P0 and P1 for each environment, each containing between five and six policies

environment and the policy and internal state of the other agent. We make no assumptions about the reward
structure of the environment and test across competitive, cooperative, and mixed incentive domains.

The high-level experimental design is shown in Figure 7. For each environment there is a set of agent
populations P, where P ∈ P is a population containing a set of possible policies for the other agent. The
planning agent is given access to the model of the environment as well as a known population of policies
Pplan ∈ P which can be used for planning and training. Importantly, since our experiments focus on performance
of the various methods when paired with an unknown other agent, the model of the environment is accurate and
the same across populations, only the planning and test populations change. We assess each method against
a separate population of policies Ptest ∈ P, which may be the same or different to the planning population.
Experiments where the planning and test populations are the same, Pplan = Ptest, are referred to as in-
distribution. Conversely, experiments where Pplan ̸= Ptest are referred to as out-of-distribution. By comparing
in- and out-of-distribution performance, we are able to investigate each method’s ability to generalize to novel
co-players.

For each environment, we employ two distinct populations, denoted as P0 and P1 with P = {P0, P1}.
These are used for both the planning Pplan and test Ptest populations. We conduct our experiments for each
method by iterating over combinations of planning and test populations, ⟨Pplan, Ptest⟩ ∈ P × P, resulting in
four repetitions of each experiment per algorithm (each with a different ⟨Pplan, Ptest⟩ combination). For every
population P ∈ P we used a uniform distribution over policies as the prior, so the other agent had equal
probability of using each policy in the set P .

A total of 10 to 12 policies were generated for the populations P in each environment. Depending on the
environment the set was made up of heuristic, learned, or a mix of heuristic and learned policies. The 10 to
12 policies were divided roughly equally into the two populations P0 and P1 with each containing five to six
policies. More details about the specific policies used in each population are provided in Appendix A.

5.2 Planning Methods
We focus on planning methods designed for controlling a single agent within a general, multi-agent environ-
ment. This means we do not include a methods designed for environments with specific structures, e.g. with
communication [84], centralized control [79, 80, 82] or full observability [77], although research in these areas is
supported by POSGGym. Furthermore, since we are interested in studying planning in complex environments
we restrict ourselves to methods that are capable of scaling to large environments with millions of states. In
practice, this limits us to online planning approaches based on MCTS [41] as currently these have proven to
be the most scalable, general methods. However, we highlight that POSGGym’s general multi-agent API can
be used for any planning method that is applicable to POSGs or any of its sub-classes, e.g. Dec-POMDP,
POMDP, MG, etc.

For our experiments we compare the following planning methods:

14

• Interactive Nested Tree Monte Carlo Planning (INTMCP) [86]: Models the environment as an I-
POMDP and uses nested-MCTS to solve the I-POMDP at each reasoning level online. We use a reasoning
level of l = 2 for our experiments, UCB for the exploration policy, and Monte Carlo rollouts for node
evaluation. Notably, it does not incorporate Pplan into its decision-making, instead relying on a recursive
I-POMDP model for the other agent.

• Interactive Partially Observable Monte Carlo Planning (IPOMCP) [84, 85]: Models the environment
as an I-POMDP with uncertainty over the other agent’s internal state (history and policy). Uses Pplan for
modelling the other agent4. Uses UCB for the exploration policy and Monte Carlo rollouts for node evaluation

• Partially Observable Monte Carlo Planning (POMCP) [42]: Models the environment as a POMDP
with the other agent’s actions selected uniformly at random. This approach acts as a baseline since it uses
naive modeling for the other agent. Uses UCB for the exploration policy and Monte Carlo rollouts for node
evaluation

• Partially Observable Type-based Meta Monte Carlo Planning (POTMMCP) [78]: Similar to
IPOMCP except the set of other agent policies are additionally utilized to inform planning via a meta-policy.
Uses PUCB for the exploration policy with the meta-policy as the search policy. Uses Monte Carlo rollouts
and pre-computed value function for node evaluations, depending on the representation used for the other
agent policies in Pplan.

A high-level comparison of the key differences between each planning algorithm is shown in Table 3. Noting
that both INTMCP and POMCP utilize their own model for the other agent and thus do not incorporate the
planning population into their decision-making. For these two methods, we only look at their out-of-distribution
performance, since their internal models are always different from the test population. Our experiments help
evaluate how beneficial the inductive biases of these two methods are.

Table 3: Comparison of the components of the planning and combined algorithms used in our experiments.
U(Pplan) in the Other Agent Model column indicates the method models the other agent using a uniform
distribution over the planning population of policies Pplan

Algorithm Search Policy Exploration Policy Other Agent Model

INTMCP [86] Random UCB Nested MCTS
IPOMCP [84, 85] Random UCB U(Pplan)
POMCP [42] Random UCB Random
POTMMCP [78] Meta-Policy over Pplan PUCB U(Pplan)
COMBINED πBR PUCB U(Pplan)

We tested each method across a range of planning budgets S ∈ [0.1, 1, 5, 10, 20], where S represents seconds
of search time per step. Further details on each method and their hyperparameters are provided in Appendix B.

5.3 Learning Method
For the learning method, we train a single deep RL policy as a best-response against each population P ∈ P.
We refer to the learning method as Reinforcement Learning-Best Response (RL-BR). To train each policy we
use Proximal Policy Optimization (PPO) [120] as the specific RL algorithm because it is used extensively
for MARL research [20, 121, 122] and worked well across all environments we tested. In each environment, a
separate RL-BR policy πBR,k was trained for each population Pk ∈ P. Each policy πBR,k was trained for a
fixed number of episodes where at the start of each episode the policy for the other agent π−i was sampled
uniformly at random from the planning population, π−i ∼ U(Pk). In this way each policy was trained to be a
best-response to the uniform mixture over the planning population.

To ensure reproducibility in our results, we trained five versions of the same policy using different random
seeds for each planning population in each environment. Each individual RL-BR policy was trained until con-
vergence as indicated by their learning curve. The learning curves for each policy and training hyperparameters
are provided in Appendix C.

4In the original IPOMCP[85] and CIPOMCP[84] papers a single policy for the other agent policy was generated using an I-POMDP
solver, here we use the policies from the planning population.

15

5.4 Combined Planning and Learning Method
The combined planning and learning method incorporates the RL-BR policies from the previous section as a
search policy within an MCTS based planner. POTMMCP [78] was used as the base planner with the search
policy (normally the meta-policy) replaced with the RL-BR policy. We refer to this method simply as Combined.
A side-by-side comparison of its properties with the other planning methods is shown in Table 3.

Combining a policy trained via RL with MCTS in this way has been applied in a number of previous works
in varying ways [15–17, 52, 123]. Prior work has focused on settings where the environment is fully-observable
or there is access to information-states. In this work we investigate combining RL plus planning using particle
based beliefs. Using particle based beliefs is the dominant paradigm for planning under uncertainty in large
environments. This work is the first, to the best of the authors knowledge, to provide a comprehensive evaluation
of combining planning with RL using particle based beliefs in large multi-agent environments.

For all experiments using the combined learning and planning method we follow the same experiment
protocol used for the planning methods, testing across a range of planning budgets S ∈ [0.1, 1, 5, 10, 20]. We
also repeat each experiment using each of the five RL-BR policies trained for each environment and planning
population.

(a) CooperativeReaching-v1 (b) Driving-v1 (c) LevelBasedForaging-v3

(d) PredatorPrey-v0 (e) PursuitEvasion-v1

Fig. 8: The environments used in our experiments. We used a diverse set of environments, including cooperative,
mixed, and competitive scenarios. Since it is asymmetric we use two versions of PursuitEvasion-v1: i0 and i1
where planner controls the pursuer (blue) and evader (red), respectively

5.5 Experiment Environments
We tested each method on a range of environments from POSGGym. This included5: Cooperative-Reaching
(cooperative) [101], Driving (mixed) [106, 107], Level-Based Foraging (mixed) [68, 103], Pursuit-Evasion (com-
petitive) [86, 112], Predator-Prey (cooperative) [108, 109]. These environments have all been previously studied
in the RL and planning literature and span cooperative, mixed, and competitive settings, as well as a range
of multi-agent concepts (see Table 1), allowing us to evaluate whether the benefits of combining planning and

5For further details on each environment please refer to the documentation at https://posggym.readthedocs.io

16

https://posggym.readthedocs.io

0 5 10 15 20
Search Time Limit (s)

0.4

0.5

0.6

0.7

0.8
M

ea
n

No
rm

al
ize

d
Re

tu
rn

In Distribution

0 5 10 15 20
Search Time Limit (s)

0.4

0.5

0.6

0.7

0.8
Out of Distribution

Algorithm
INTMCP
IPOMCP
POMCP
POTMMCP
RL-BR
COMBINED

Fig. 9: In-distribution (left) and out-of-distribution (right) performance of learning (RL-BR), combined, and
planning methods (INTMCP, IPOMCP, POMCP, POTMMCP) averaged across all environments. Each plot
shows the mean return normalized to the interval [0, 1] from the [min,max] possible returns for each environ-
ment. In-distribution shows results for when the planning and test populations are the same, out-of-distribution
shows results when the planning and test populations are different. For the planning and combined methods
we show results across search budgets (x-axis). Note, our implementations of INTMCP and POMCP do not
use knowledge of the planning populations so we show only out-of-distribution performance for these methods.
We find that combined planning and learning leads to improvements over each approach alone, but only in the
in-distribution setting where the agent has an accurate model of the environment and the other agent. Shaded
areas show 95% confidence intervals

learning generalize across different types of multi-agent scenarios. We limited the selection to those with dis-
crete actions and observations, as this was what the planning methods in our experiments were designed for.
The size of the various components of each environment are shown in Table 4.

Table 4: Properties of each experiment environment. |S0| denotes the number of environment states in the
planning agent’s initial belief which have non-zero support given the agent’s initial observation. |P0| and |P1|
are the number of policies within agent population

Environment Reward Type |S| |S0| |Ai| |Oi| |P0| |P1|
CooperativeReaching-v1 Cooperative 625 1 5 625 5 6
Driving-v1 Mixed 8.9× 1012 9 5 6.6× 106 5 5
LevelBasedForaging-v3 Mixed 1.5× 1011 5.0× 106 6 30 5 5
PredatorPrey-v0 Cooperative 7.2× 1010 64 5 100 5 6
PursuitEvasion-v1_i0 Competitive 2.8× 108 3 4 768 6 6
PursuitEvasion-v1_i1 Competitive 2.8× 108 1 4 4608 6 6

5.6 Experiment Results
In this section, we present the main results of our experiments. We start with the key high-level findings
looking at performance of each method when averaged across the entire set of environments. This gives us a
view of how each method compares over a broad distribution. Next, we take a deeper dive into the results of
each environment separately. Importantly, this allows us to gain some insights into where the methods do well,
where they do not, and why.

5.6.1 Overall Results

Figure 9 shows in- and out-of-distribution performance of each method averaged across environments and
planning populations. Averaging across a distribution of environments allows us to look at how each algorithm

17

performs more broadly, rather than for a single environment. To ensure all environments are weighted equally,
we normalize the returns to be within [0, 1], so that 0 and 1 correspond to the minimum and maximum possible
return within each environment. Below we discuss some of the key takeaways from our results.

For the in-distribution setting, combining planning and learning improves on either approach
alone, given enough planning time.
We observe the benefits of incorporating planning alongside a trained RL policy when provided with an accurate
model of the world and other agents. This finding aligns with previous research on combining search and RL
in 2-player, zero-sum games [15, 16, 18] and cooperative games [19, 89]. Unlike previous studies that utilize
exact or learned belief models with factored public and private observations, here we show that combining a
RL policy with a planner is also an effective method when using particle based beliefs. We believe this is a
promising result for efforts to scale up planning to more complex domains, showing that existing particle based
planning methods can benefit from an RL trained policy, and vice versa.

However, this relative gain in performance does not occur in the out-of-distribution setting where the model
of the other agent is inaccurate. In fact, performance appears to degrade slightly with increased search time.
Subsequent sections will delve into the reasons behind this phenomenon.

The learning method (RL-BR) outperforms all pure planning methods in both in- and
out-of-distribution settings.
This demonstrates a general benefit of RL over pure planning within our experimental setup. However, the RL
performance does not come without some cost, requiring a larger amount of offline compute for training –up to
48 hours on 32 CPUs and 1 GPU per policy– compared to the online planners. Nonetheless, RL policies offer
faster per-step execution time. Our observations highlight a key advantage of modern deep RL based methods,
namely their ability to effectively leverage large amounts of compute.

For the in-distribution setting, planning methods exhibit improved performance with longer search time,
with POTMMCP even matching RL-BR’s performance with 20 s of search time. We observe that planning
methods tends to converge towards optimality in environments where they posses a perfect model of the
environment and the other agent. Notably, in some specific environments, planning methods outperform RL-BR,
as shown in Figure 11. We discuss this further in section Section 5.6.2.

The most significant performance gap between learning and planning occurs in the out-of-distribution
setting. Here, planning methods are prone to over-fitting to an inaccurate model of the other agent, leading
to erroneous beliefs and subsequently bad policies. We discuss belief error during planning in greater detail
in Section 5.6.3. Conversely, the RL-BR method likely benefits from its neural network policy representation,
offering some degree of generalization to out-of-distribution settings. RL-BR also does not suffer due to belief
approximation error stemming from Monte Carlo belief updates.

Monotonic improvement in performance with search time is evident for all planning and
combined methods in the in-distribution setting, contrasting with the out-of-distribution setting.
While accurate models of the environment and the other agent lead to performance gain with increased search
time, this trend does not hold uniformly in multi-agent settings. Notably, when the test population differs from
the planning population, we see performance plateau or even decline with planning budget. Further exploration
into the underlying cause of this discrepancy is discussed in Section 5.6.3.

A large gap exists between in- and out-of-distribution performance across all methods.
Figure 10 illustrates this contrast in performance, highlighting the impact of inaccurate other agent models,
regardless of whether methods are learning or planning based, or a combination of both. This observation
indicates the general brittleness of the tested methods when encountering novel partners.

It is worth noting that our results are influenced by the specific test populations used. Adjusting the planning
population, such as a larger or more diverse population based on some diversity metric, could potentially
narrow this performance gap. The design of populations to enhance the robustness of autonomous agents in
multi-agent settings is an active area of research [53, 101, 124, 125], and our finding emphasize its significance
for both planning and RL.

Importantly, we observed similar overall trends between cooperative (CooperativeReaching-v1,
PredatorPrey-v0), competitive (PursuitEvasion-v1), and mixed-incentive (Driving-v1, LevelBasedForaging-v3)
environments. As we will discuss in the following sections, differences in performance between environments

18

IP
OM

CP

PO
TM

M
CP

CO
M

BI
NE

D

RL
-B

R

Algorithm

0.00

0.05

0.10

Ge
ne

ra
liz

at
io

n
Ga

p

Fig. 10: Gap between in- and out-of-Distribution mean normalized returns of planning (IPOMCP, POT-
MMCP), learning (RL-BR), and combined methods averaged across all environments. For planning and
combined methods results using the maximum search time (20 s) are shown. Error bars show 95% confidence
intervals

appear to be driven more by structural properties (e.g., observation and state space size, effective planning
horizon) than by whether agents are cooperating or competing. This aligns with the decision-theoretic nature of
the planning methods we tested, which are agnostic to reward structure and focus on maximizing the planning
agent’s reward while modeling other agents’ behavior as part of the environment (Section 2.2).

Now we remind the reader that the above takeaways are based on averaging performance across all envi-
ronments. Tn the next sections we zoom into the results for individual environments to explore these trends at
a finer granularity.

5.6.2 In-Distribution Performance

Here we analyze the in-distribution performance of each method in each environment individually. The primary
findings are presented in Figure 11. Contrary to the overall results, we observe more nuanced trends at the
individual environment level.

In some cases, combining planning and learning can lead to deteriorating performance as the
planning budget increases.
Specifically, in the LevelBasedForaging-v3 environment, the performance of the combined method decreases
with longer search times. This unexpected outcome is notable because the combined method has access to an
accurate model of the environment and the other agent, so we expect increasing performance with search time,
as observed in all other environments. The result highlights a limitation of current particle-based planners,
namely the introduction of error due to poor belief approximation.

From Table 4, we observe that the size of the initial state distribution for LevelBasedForaging-v3 is signifi-
cantly larger than for any other environment we tested with |S0| = 5.0× 106. In contrast, in our experiments
the number of particles each planning method uses to represent its initial belief is at most 2320 (at the maxi-
mum planning budget). This is more than double what has been used in prior works on multi-agent decision
theoretic planning, [84, 85], yet is still only a fraction of the initial belief size for LevelBasedForaging-v3. To
make matters worse, in LevelBasedForaging-v3 many state features remain constant throughout an episode fol-
lowing initialization. Since all our planning methods rely on Bayesian updates for the beliefs, if the true value
of a state features is not within the initial belief, the planner will never be aware of it, even with unlimited
planning budget post-initial belief. This explanation is supported by examining the probability assigned to the
true environment state by the combined agent’s belief (Figure 12), revealing a near-zero probability initially
and reaching at most < 0.04. This is significantly lower than the initial belief accuracy in any of the other
environments.

Poor belief accuracy leads to worsening performance as the planning budget increases due to how PUCB
operates. Initially, action selection at the root of the tree is heavily biased by the search policy, in this case
the RL-BR policy. However, as more time is spent searching, the visit counts of each action come to dominate,
leading to less bias towards the search policy. Consequently, as planning time increases, the policy at the root

19

0 5 10 15 20

0.80

0.82

0.84

0.86

0.88

0.90

M
ea

n
Re

tu
rn

CooperativeReaching-v0

0 5 10 15 20

0.6

0.7

0.8

0.9

1.0
Driving-v1

0 5 10 15 20
0.15

0.20

0.25

0.30

0.35

0.40

0.45
LevelBasedForaging-v3

0 5 10 15 20
Search Time (s)

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

M
ea

n
Re

tu
rn

PredatorPrey-v0

0 5 10 15 20
Search Time (s)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5
PursuitEvasion-v1_i0

0 5 10 15 20
Search Time (s)

0.4

0.2

0.0

0.2

0.4

0.6

PursuitEvasion-v1_i1

Algorithm
IPOMCP
POTMMCP
RL-BR
COMBINED

Fig. 11: In-distribution performance of planning, learning, and combined methods in each environment. The
plots show the mean return of each method when the planning and test populations are the same across
planning budgets (x-axis), with results averaged over the two experiment populations. Shaded areas show 95%
confidence intervals

of the tree diverges away from the search policy and towards the optimal action based on the environment
model and agent’s belief. In environments like LevelBasedForaging-v3, where belief accuracy is problematic,
this means the agent biases more towards a policy based on an incorrect belief.

Continuing to increase planning time might eventually lead to performance improvement as belief approx-
imation improves. However, this would require using significantly more particles for the belief representation,
quickly becoming impractical for even larger environments. Our results in the LevelBasedForaging-v3 envi-
ronment underscores a key limitation of current methods for belief-based planning. They either work only for
relatively sparse belief spaces or require domain-specific knowledge to compute the true belief state [19] or learn
a good approximation [89, 90]. Our result suggests that novel, general methods for producing robust approxi-
mate beliefs is an important direction for future planning under uncertainty research looking to scale to larger
environments.

At least one planning method equals or exceeds the learning (RL-BR) method given sufficient
planning time in four of six environments.
Specifically, POTMMCP outperforms RL-BR in Driving-v1 and PredatorPrey-v0, and matches the performance
in CooperativeReaching-v0 and PursuitEvasion-v1_i0.

One explanation for this is that in these environments, each planning method is able to improve its prediction
about the other agent’s policy throughout an episode, leading to more accurate beliefs about the environment
state and the other agent’s future actions, as evidenced in Figure 14 and Figure 15. Improved belief accuracy
directly translates to more accurate value estimates for actions and thus a better policy for the planning agent.

Another explanation is the ability of planning to generalize to novel situations. With an accurate belief
and model of the environment, planning allows the agent to improve its action value estimates online for
any encountered state, regardless of the state’s rarity. In contrast, RL-BR performs all policy improvement
offline, making it brittle when faced with situations rarely encountered during training. Evidence of this can
be seen in the success rate of each method in the Driving-v1 environment showin in Table 5. Specifically, all
methods succeed the vast majority of the time (> 93%), however in the minority of failures RL-BR crashes
significantly more often than the planning methods (4.14% vs 0.98%), suggesting that planning methods are

20

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

Be
lie

f S
ta

te
 A

cc
ur

ac
y CooperativeReaching-v0

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Driving-v1

0 10 20 30 40 50
0.00

0.02

0.04

LevelBasedForaging-v3

0 10 20 30 40 50
Episode Step

0.00

0.05

0.10

0.15

0.20

Be
lie

f S
ta

te
 A

cc
ur

ac
y PredatorPrey-v0

0 20 40 60 80 100
Episode Step

0.0

0.1

0.2

0.3

0.4
PursuitEvasion-v1_i0

0 20 40 60 80 100
Episode Step

0.00

0.25

0.50

0.75

1.00
PursuitEvasion-v1_i1

Search Time (s)
0.1
1.0
5.0
10.0
20.0
In Distribution
True
False

Fig. 12: Probability assigned by the combined method’s belief to the true environment state during an episode.
Each plot shows a different environment, with each line representing a different search budget (shaded areas
show 95% confidence intervals). Solid lines show in-distribution accuracy; dashed lines show out-of-distribution
accuracy. Belief accuracy is significantly worse out-of-distribution throughout substantial portions of episodes in
most environments especially at higher search budgets (darker lines). The exception being LevelBasedForaging-
v3 where poor accuracy occurs in both settings due to its large initial belief space (|S0| = 5.0 × 106). Y-axis
scales differ between plots.

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

Be
lie

f P
ol

icy
 A

cc
ur

ac
y CooperativeReaching-v0

0 10 20 30 40 50

0.2

0.4

0.6

0.8

1.0
Driving-v1

0 10 20 30 40 50

0.20

0.25

0.30
LevelBasedForaging-v3

0 10 20 30 40 50
Episode Step

0.2

0.4

0.6

0.8

Be
lie

f P
ol

icy
 A

cc
ur

ac
y PredatorPrey-v0

0 20 40 60 80 100
Episode Step

0.1

0.2

0.3

0.4

0.5

PursuitEvasion-v1_i0

0 20 40 60 80 100
Episode Step

0.2

0.4

0.6
PursuitEvasion-v1_i1

Search Time (s)
0.1
1.0
5.0
10.0
20.0

Fig. 13: Probability assigned by the combined method’s belief to the true policy of the other agent throughout
an episode in the in-distribution setting. Each plot shows a different environment, with each line representing a
different search budget (shaded areas show 95% confidence intervals). Across all environments, belief accuracy
either improves or remains stable with increased search budget (never degrading), and with adequate search
time, shows improvement during early episode stages as agents interact and reduce uncertainty about each
other’s policies.

able to improve on the robustness of RL-BR in a minority situations, likely those rare in RL-BR’s training
distribution. Given the large negative reward for crashing, this small difference in crash probability has a big
impact of final expected return. We believe this observation most likely holds beyond the environments used
in our experiments and propose further investigation of this as an interesting direction for future research.

In two environments, LevelBasedForaging-v3 and PursuitEvasion-v1_i1, no planning method reached the
performance of RL-BR. In LevelBasedForaging-v3, the failure mode of particle-based planning is attributed to
poor belief accuracy due to the large initial belief size as discussed above.

In PursuitEvasion-v1_i1, where the planning agent starts with a perfect belief, the performance gap
between planning and learning methods is likely due to the challenge of planning over long horizons. Unlike

21

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

Be
lie

f S
ta

te
 A

cc
ur

ac
y CooperativeReaching-v0

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Driving-v1

0 10 20 30 40 50
0.00

0.02

0.04

0.06
LevelBasedForaging-v3

0 10 20 30 40 50
Episode Step

0.00

0.05

0.10

0.15

0.20

Be
lie

f S
ta

te
 A

cc
ur

ac
y PredatorPrey-v0

0 20 40 60 80 100
Episode Step

0.0

0.1

0.2

0.3

0.4
PursuitEvasion-v1_i0

0 20 40 60 80 100
Episode Step

0.00

0.25

0.50

0.75

1.00
PursuitEvasion-v1_i1

Search Time (s)
0.1
1.0
5.0
10.0
20.0
In Distribution
True
False

Fig. 14: Probability assigned by POTMMCP’s belief to the true environment state throughout an episode.
Each plot shows a different environment, with each line representing a different search budget (shaded areas
show 95% confidence intervals). Solid lines show in-distribution accuracy; dashed lines show out-of-distribution
accuracy. Like the combined method in Figure 12, belief accuracy is significantly worse out-of-distribution
throughout substantial portions of episodes in most environments, especially at higher search budgets (darker
lines) LevelBasedForaging-v3 again shows poor accuracy in both settings due to its large initial belief space.
Y-axis scales differ between plots.

0 10 20 30 40 50

0.2

0.4

0.6

0.8

1.0

Be
lie

f P
ol

icy
 A

cc
ur

ac
y CooperativeReaching-v0

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Driving-v1

0 10 20 30 40 50

0.20

0.25

0.30

LevelBasedForaging-v3

0 10 20 30 40 50
Episode Step

0.2

0.4

0.6

0.8

Be
lie

f P
ol

icy
 A

cc
ur

ac
y PredatorPrey-v0

0 20 40 60 80 100
Episode Step

0.2

0.4

PursuitEvasion-v1_i0

0 20 40 60 80 100
Episode Step

0.2

0.3

0.4

0.5

0.6
PursuitEvasion-v1_i1

Search Time (s)
0.1
1.0
5.0
10.0
20.0

Fig. 15: Probability assigned by POTMMCP’s belief to the true policy of the other agent throughout an
episode in the in-distribution setting. Each plot shows a different environment, with each line representing a
different search budget (shaded areas show 95% confidence intervals). Like the combined method in Figure 13,
belief accuracy either improves or remains stable with increased search budget (never degrading), and with
adequate search time, shows improvement during early episode stages as agents interact and reduce uncertainty
about each other’s policies.

LevelBasedForaging-v3, belief inaccuracy is not the main cause, as indicated by the increasing performance
of the Combined method with search time6. Rather, the environment’s structure presents a fundamental long
horizon planning challenge. Specifically, reaching the goal requires the agent to plan over many time steps
while avoiding large negative rewards (in this case, being spotted by the other agent). If the agent is unable
to plan deep enough to find trajectories where it reaches the goal, it instead gets stuck in the sub-optimal
strategy of ignoring the goal and instead focusing on just avoiding the other agent. RL-BR benefits from sig-
nificantly more compute to move beyond the sub-optimal strategy. The pure planning methods on the other

6In Figure 12 we see belief state accuracy decreases over time in the PursuitEvasion-v1_i1 environment, this is expected due to the
naturally growing uncertainty over time, this is in contrast the other environments where we expect more certainty over time.

22

Table 5: Percentage of in-distribution episodes in the Driving-v1 environment that ended with a crash
(Crashed), the agent reaching the goal (Success), or the step limit being reached (Timedout). For the planning
based methods (IPOMCP, POTMMCP, COMBINED) results using the maximum search time (20 s) are shown

Algorithm Crashed Success Timedout

IPOMCP 0.98% 97.46% 1.56%
POTMMCP 0.12% 99.88% 0.00%
RL-BR 4.14% 93.12% 2.74%
COMBINED 0.46% 99.51% 0.03%

Co
op

er
at

iv
eR

ea
ch

in
g-

v0

Dr
iv

in
g-

v1

Le
ve

lB
as

ed
Fo

ra
gi

ng
-v

3

Pr
ed

at
or

Pr
ey

-v
0

Pu
rs

ui
tE

va
sio

n-
v1

_i0

Pu
rs

ui
tE

va
sio

n-
v1

_i1
0

10

20

30

40

50

60

M
ea

n
Ep

iso
de

 L
en

gt
h

Algorithm
IPOMCP
POTMMCP
RL-BR
COMBINED

Fig. 16: Mean episode length for each algorithm in each environment for the in-distribution setting. Results for
planning (POTMMCP, IPOMCP) and combined methods are using the maximum search time (20 s). Maximum
episode length is 50 for all environments except PursuitEvasion-v1, where it is 100. PursuitEvasion-v1_i1 had
the longest effective planning horizon. All other environments had shorter effective planning horizons due to
the availability of more frequent positive rewards for the agent

hand are less capable of doing this, given their limited search budget. We see evidence of this in the longer
average episode times for the planning methods in this environment, with the gap in episode length much
greater in PursuitEvasion-v1_i1 than for any other environment (Figure 16). Additionally, we found that
10× more training steps were required to train RL-BR till convergence in PursuitEvasion-v1_i1 compared to
PursuitEvasion-v1_i0 (Figure C3). The gap in performance between RL-BR and the planning methods high-
lights the challenge of long-horizons for planning methods. Fortunately, improved search policies, such as those
used in the Combined and POTMMCP methods as well as in other domains [16], offer a way to overcome the
challenge of planning over long-horizons.

5.6.3 Out-of-Distribution Performance

In this section, we explore how well each planning and learning method generalizes when the planning and
test populations differ (Pplan ̸= Ptest) within each environment. We include results for INTMCP and POMCP,
which do not integrate a planning population into the planning process. Instead, INTMCP models other agents
using a level two I-POMDP, while POMCP models other agents as uniform random, serving as baselines for
common agent modeling frameworks. The main results are shown in Figure 17.

23

0 5 10 15 20

0.65

0.70

0.75

0.80

0.85

0.90

M
ea

n
Re

tu
rn

CooperativeReaching-v0

0 5 10 15 20

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
Driving-v1

0 5 10 15 20
0.15

0.20

0.25

0.30

0.35

0.40

LevelBasedForaging-v3

0 5 10 15 20
Search Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
Re

tu
rn

PredatorPrey-v0

0 5 10 15 20
Search Time (s)

0.3

0.2

0.1

0.0

0.1

PursuitEvasion-v1_i0

0 5 10 15 20
Search Time (s)

0.4

0.2

0.0

0.2

PursuitEvasion-v1_i1

Algorithm
INTMCP
IPOMCP
POMCP
POTMMCP
RL-BR
COMBINED

Fig. 17: Out-of-distribution performance of planning, learning, and combined methods in each environment.
The plots show the mean return of each method across planning budgets (x-axis) when the planning and test
populations are different, with results averaged over the two experiment populations. Shaded areas show 95%
confidence intervals

Combining learning and planning leads to worse performance than learning alone in four of
six environments.
This outcome is largely attributed to poor belief accuracy similar to the LevelBasedForaging-v3 environment in
the in-distribution setting. As shown in Figure 12, in all environments except LevelBasedForaging-v3, incorrect
models of the other agent in the out-of-distribution setting results in worse beliefs about the environment
state compared to the in-distribution setting, despite having a perfect environment model in both cases. This
highlights a critical challenge in integrating planning methodologies in the multi-agent setting: the quality of
the model predicting other agents’ behaviors profoundly impacts belief accuracy and performance. Finding
more robust methods for modelling the other agents, or developing planning techniques better able to handle
model inaccuracy in multi-agent settings are both promising directions for future work.

Planning methods that modeled the other agent naively (POMCP) or recursively (INTMCP)
generally performed worse than other approaches.
While frameworks based on recursive reasoning hold promise for domains like human-robot interaction (HRI)
[8], they showed limited utility in our experiments, where the other agent policies did not behave randomly or
employ explicit recursive reasoning. Rather our experiments show the benefits that can be gained by explicitly
considering the possible types of other agent behaviour. Furthermore, a drawback of INTMCP is its reliance
on nested MCTS which disperses simulations across multiple decision trees, thus requiring a higher number
of simulations for effective decision-making. Improving the accuracy of recursive models remains a practical
challenge, suggesting that adopting diverse policies might offer a more universally resilient solution, especially
considering the burgeoning field of population-based training [53, 101, 124, 125].

24

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

Be
lie

f A
ct

io
n

Ac
cu

ra
cy

CooperativeReaching-v0

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Driving-v1

0 10 20 30 40 50

0.15

0.20

0.25

LevelBasedForaging-v3

0 10 20 30 40 50
Episode Step

0.2

0.4

0.6

Be
lie

f A
ct

io
n

Ac
cu

ra
cy

PredatorPrey-v0

0 20 40 60 80 100
Episode Step

0.2

0.3

0.4

0.5

PursuitEvasion-v1_i0

0 20 40 60 80 100
Episode Step

0.2

0.3

0.4

0.5

0.6
PursuitEvasion-v1_i1

Search Time (s)
0.1
1.0
5.0
10.0
20.0
In Distribution
True
False

Fig. 18: Probability assigned by the Combined method’s belief to the true action of the other agent during an
episode in each environment. Each line represents a different search budget, with solid lines show in-distribution
accuracy and dashed lines showing out-of-distribution accuracy. In general belief accuracy is significantly worse
in the out-of-distribution setting, where the planning agent’s model of the other agent is inaccurate

Planning methods performed no better or even worse than pure learning in five out of six
environments.
Again, this trend is likely due to the formation of inaccurate beliefs about the environment state (as shown
in Figure 12). This result again highlights the reliance on accurate other agent models for planning in multi-
agent settings in current state-of-the-art methods. It also points to a clear need for planning methods better
equipped to handle model inaccuracy.

Increasing search budget did not consistently lead to monotonically improving performance for
planning methods.
Unlike the in-distribution setting, higher planning time did not always result in improved performance in the
out-of-distribution setting. Performance varied significantly across environments, attributed to the formation
of inaccurate beliefs and challenges in predicting other agent’s actions (Figure 18). These findings underscore
the complexities and limitations of planning methods in environments where accurate modeling of agents and
their interactions is challenging.

5.6.4 Experimental Limitations

While our experimental results provide insights into the relative performance of planning, learning, and com-
bined approaches, there are important limitations to consider. A key consideration is the impact of our chosen
reference policy populations on the experimental outcomes. While specific performance metrics would likely
differ with alternative populations, we believe our overall conclusions would remain unaffected, based on several
factors in our experimental design. First, most of the takeaways we have presented are based on the rela-
tive performance between methods and the in- versus out-of-distribution settings using consistent populations.
Designing our experiments in this way provides some control for population effects. Second, we deliberately
constructed populations with behavioral diversity (as evidenced in Figure A2) in order to mirror real-world sce-
narios where agents encounter various skill levels and behaviors. Where possible, we incorporated established
strategies from existing literature to maintain consistency with prior work. Additionally, our investigation of
underlying mechanisms, particularly the relationship between belief accuracy and performance (Figures 12 - 15,
18), provides mechanistic explanations for our observations that should generalize beyond specific populations.

Our results also highlight broader challenges in planning under uncertainty in multi-agent settings, partic-
ularly regarding belief accuracy and generalization to novel partners. The degradation in performance when
encountering out-of-distribution partners, even with combined planning and learning approaches, suggests a
fundamental challenge that may require new methodological advances to address. This limitation is particu-
larly relevant for practical applications where accurate modeling of other agents’ behavior patterns is often
difficult or impossible to achieve.

25

6 Conclusion and Future Directions
In this paper we presented POSGGym, a library focused on facilitating research at the intersection of decision-
theoretic planning and RL. The key contributions of POSGGym are twofold: its provision of a diverse set
of discrete and continuous environments complete with their dynamics models suitable for planning, and its
collection of diverse reference policies. By designing the API to be similar to popular MARL libraries, users
of POSGGym are more easily able to utilize the growing ecosystem of tools for deep RL and apply them to
planning problems. POSGGym is fully open-source and accepting contributions of new multi-agent, planning
benchmarks.

Using POSGGym we conducted an extensive empirical evaluation of existing state-of-the-art planning
under uncertainty methods and combined planning and RL. Our investigation was the first comprehensive
analysis comparing state-of-the-art online planners for large, partially observable multi-agent environments.
Furthermore, it is the first to explore combining learning with planners based on particle beliefs. Our results
demonstrate that combining RL with particle based planning can be an effective method for improving the
robustness of agents in the multi-agent setting, given an accurate model of the environment and other agents.
We also discover some key limitations of combining existing methods of particle based planning with learning,
namely performance can suffer if there is inaccuracy in the other agent model, or due to poor belief approxima-
tion in environments with dense belief spaces. This highlights the critical need for developing planning methods
that are robust to model uncertainty and a better quantified understanding of the relationship between model
accuracy and planning performance - a direction we hope POSGGym will help facilitate.

We hope that POSGGym along with our empirical results will spur further research on the integration
of decision-theoretic planning and RL in partially observable multi-agent domains, so as to gain the best of
model-driven and data-driven techniques. This interface between planning and learning is vast with many
avenues for further research. In particular, improving the robustness to novel partners, and finding more scalable
representations of complex beliefs.

Appendix A Agent Populations
POSGGym comes with a diverse set of policies for the majority of the supported environments. Depend-
ing on the environment the available policies are a mix of heuristic and deep RL policies. In this section
we provide some details on the general training procedures used for the deep RL policies in POSGGym.
We also go into greater detail about the policy populations used in our experiments. Over time we expect
to update the set of policies included in POSGGym, for the full up-to-date list please check out the doc-
umentation at https://posggym.readthedocs.io/. All code used for training the RL policies is available at
https://github.com/RDLLab/posggym-baselines.

A.1 Reinforcement Learning Policy Training
Every RL policy included with POSGGym to-date uses a LSTM actor-critic neural network architecture and
was trained using Proximal Policy Optimization (PPO) [120]. LSTM’s allow each policy to be conditioned on
histories of action and observations, which is important for the majority of partially observable environments.
The specific architecture used consisted of a fully-connected network (FCN) trunk, followed by a single layer
LSTM, and then separate FCN actor and critic heads. The specific neural network architecture and training
hyperparameters for each environment are shown in Table A1. For the grid-world problems, hyperparameters
values were chosen based on commonly used values in the literature, since we found these worked well in
general. For the continuous environments, some hyperparameter tuning was conducted to select appropriate
values. The number of training steps was chosen such that policies could train until convergence, as indicated
by their learning curves.

We used different multi-agent training schemes depending on the environment, while the same RL algo-
rithm and neural network architecture was used for each individual policy. The two schemes we used were
K-Level Reasoning (KLR) [57] and independent self-play with best response (SP-BR, commonly refered to
as Independent PPO when using PPO as the RL algorithm) [126]. We used these two methods as they have
been extensively studied [51, 53, 57, 126], are simple to implement (and thus replicate), and produced diverse
populations of policies when combined with policy pruning to remove similar policies. Figure A1 provides a
visualization of the training schema used. The following sections contain a high level overview of each scheme.

26

https://posggym.readthedocs.io/
https://github.com/RDLLab/posggym-baselines

Table A1: Training hyperparameters for POSGGym RL policies in grid-world and continuous environments

Grid-world

Hyperparameter

LB
F

D
ri

vi
ng

P
re

da
to

r
P

re
y

P
ur

su
it

E
va

si
on

C
on

ti
nu

ou
s

Training steps 100M 32M 100M 10M 100M
Trunk layer sizes [64, 64] [64, 64] [64, 64] [64, 32] [256, 256]

LSTM size 64 64 64 256 256
Head layer sizes [64] [64] [64] - -

γ 0.99 0.99 0.99 0.99 0.99
Learning rate 0.0003 0.0003 0.0003 0.0003 0.0003

GAE λ 0.95 0.95 0.95 0.95 0.95
Batch size 6144 6144 6144 2048 65,536

Mini-batch size 2048 2048 2048 256 2048
Rollout horizon 64 64 64 100 100
Update epochs 2 2 2 2 2

BPTT sequence length 10 10 10 20 20
Entropy bonus 0.01 0.01 0.01 0.001 0.001

Value function coeff. 0.5 0.5 0.5 1.0 1.0
Clip parameter 0.2 0.2 0.2 0.3 0.5

Global gradient clipping 10 10 10 10 10

(a) (b) (c) (d)

Fig. A1: Multi-agent training schemas used for generating RL policies for POSGGym environments. (a) KLR
in symmetric environment, (b) KLR in asymmetric environment with two agents, (c) self-play in symmetric
environment, (d) self-play in asymmetric environment with two agents. Each box is an independent policy and
arrows indicate which policy a given policy was trained against. Figure adapted from [57]

A.1.1 K-Level Reasoning

In K-Level Reasoning (KLR) policies are trained in a hierarchy, the level K = 0 policy is trained against a
uniform random policy, level K = 1 is trained against the level K = 0, and so on with the level K policy trained
as a best response to the level K− 1 policy for K > 0. Finally, the best-response policy KBR is trained against
all K level policies, excluding the random policy and the KBR policy itself. In our implementation we used
the Synchronous KLR Best-Response (SyKLRBR) training method [57] which trains all policies synchronously
and was shown to converge in less total wall time and lead to generally more robust policies.

27

A.1.2 Self-Play

Self-play training involves training independent policies against themselves [51, 126]. For asymmetric envi-
ronments this meant training a set of policies; one for each agent in the environment for each training seed.
While for symmetric environments a single policy is used by all agents in the environment. In self-play Best-
Response (SP-BR) an additional best-response policy πBR is trained against a uniform distribution over all
the independent policies trained.

A.2 Experiment Populations
For our experiments we used a set P of 10 to 12 policies for each environment we tested in.

CooperativeReaching-v1 P consisted of 11 heuristic policies H[1-11]. With P0 = {H1, H2, H3, H4, H5}
and P1 = {H6, H7, H8, H9, H10, H11}. These policies were based on prior work [101] with some adjustments
made to ensure the population had diverse returns (Figure A2a).

Driving-v1 P consisted of 10 policies: five heuristic and five RL trained policies. P0 = {A0, A40, A60, A80,
A100} was made up of the heuristic policies, while P1 = {RL1, RL2, RL3, RL4, RL5} contained all the RL
policies. Each heuristic policy followed the shortest path from the agent’s start position to the goal but differed
on how aggressive they were, from least aggressive A0 to most aggressive A100. The aggressiveness of a policy
controlled how far away another agent had to be within the agent’s field of vision before the policy would
stop the agent’s vehicle from moving. A0 would stop if another agent was observed anywhere and would only
continue once that agent was out of view. Conversely, A100 would continue along the shortest path irrespective
of how close another observed agent was. A[40-80] followed policies between the two extremes. The RL policies
RL[1-5] were produced by first training six policies using SP-BR and then pruning away any similar policies
based on pairwise returns to give the final set of five policies. The pairwise returns for each policy in the
population P for this environment are shown in Figure A2b.

LevelBasedForaging-v3 P consisted of 10 policies: five heuristic and five RL trained policies. P0 = {H1,
H2, H3, H4, H5} contained the heuristic policies, while P1 = {RL1, RL2, RL3, RL4, RL5} contained all the
RL policies. The heuristic policies were based on prior work [101], adapted to deal with partial observability.
We pruned many of the heuristic policies used in the prior work as we found that they resulted in similar
behaviours based on their returns. The five heuristic policies used were:

• H1 always goes to the closest observed food, irrespective of the foods level.
• H2 goes towards the visible food closest to the centre of visible players, irrespective of food level.
• H3 goes towards the closest visible food with a compatible level.
• H4 selects and goes towards the visible food that is furthest from the center of visible players and that is

compatible with the agents level.
• H5 targets a random visible food whose level is compatible with all visible agents.

For the RL policies we trained a population of 13 RL policies including six using SB-BR and seven using
SyKLRBR (up to K = 5). The resulting five RL policies RL[1-5] were found by pruning away similar policies
from the full set of 13 policies. To do this the policies were clustered based on their pairwise returns then a
single policy from each cluster was chosen. The pairwise returns for each policy in the population P for this
environment are shown in Figure A2c.

PredatorPrey-v0 P consisted of 11 policies: three heuristic and eight RL trained policies. P0 = {H1, H2,
H3, RL1, RL2} was made up of a mix of heuristic and RL policies, while P1 = {RL3, RL4, RL5, RL6, RL7,
RL8} contained the remaining RL policies. The heuristic policies were chosen based on trying various heuristics
and selecting those that had diverse pairwise returns. The three heuristic policies used were:

• H1 moves towards closest observed prey, closest observed predator, or explores randomly, in that order.
• H2 moves towards closest observed prey, closest observed predator, or explores in a clockwise spiral around

arena, in that order.
• H3 moves towards closest observed prey to the closest observed predator or explores in a clockwise spiral

around arena, in that order.

For the RL policies we followed an identical protocol to the LevelBasedForaging environment; first training
13 policies using SP-BR and SyKLRBR and then pruning similar policies to produce the final population of RL
policies. The pairwise returns for each policy in the population P for this environment are shown in Figure A2d.

28

PursuitEvasion-v0 (evader "0" and pursuer "1") For both agents X ∈ {0, 1}, P consisted of 12 RL poli-
cies. P0 = {KLR0_iX, KLR1_iX, KLR2_iX, KLR3_iX, KLR4_iX, KLRBR_iX} was a population of KLR
policies trained using SyKLRBR, while P1 = {RL1_iX, RL2_iX, RL3_iX, RL4_iX, RL5_iX, RL6_iX}
contained RL policies trained using a mix of SP-BR and SyKLRBR. For the RL policies a population of 30
SyKLRBR policies (five separate populations of six policies with up to K = 4) and five self-play (no best-
response) policies were trained. The most diverse (based on pairwise returns) SyKLRBR population of six
policies was then selected for P0. P1 was then chosen by pruning away similar policies from the remaining
29 SyKLRBR and self-play policies, based on pairwise returns. The pairwise returns for each policy in the
population P for this environment are shown in Figure A2e and Figure A2f.

H1 H2 H3 H4 H5 H6 H7 H8 H9 H1
0

H1
1

Other Agent Policy

H1
H2
H3
H4
H5
H6
H7
H8
H9

H10
H11

Po
lic

y

0.14 0.31 0.28 0.23 0.16 0.21 0.24 0.89 0.66 0.51 0.89

0.21 0.25 0.23 0.28 0.21 0.15 0.21 0.89 0.62 0.44 0.90

0.22 0.30 0.43 0.46 0.00 0.00 0.22 1.00 1.00 0.26 1.00

0.33 0.24 0.49 0.49 0.00 0.00 0.29 1.00 1.00 0.25 1.00

0.13 0.17 0.00 0.00 0.30 0.45 0.14 0.75 0.19 0.75 0.75

0.23 0.15 0.00 0.00 0.43 0.28 0.21 0.75 0.16 0.75 0.75

0.12 0.16 0.33 0.34 0.17 0.17 0.23 0.89 0.57 0.54 0.88

0.89 0.88 1.00 1.00 0.75 0.75 0.88 0.88 0.99 0.77 0.88

0.61 0.64 1.00 1.00 0.20 0.17 0.60 0.99 1.00 0.37 1.00

0.50 0.46 0.32 0.29 0.75 0.75 0.49 0.76 0.41 0.75 0.75

0.88 0.88 1.00 1.00 0.75 0.75 0.87 0.89 1.00 0.75 0.00

0.0

0.2

0.4

0.6

0.8

1.0

(a) CooperativeReaching-v0

A0 A4
0

A6
0

A8
0

A1
00 RL

1
RL

2
RL

3
RL

4
RL

5
Other Agent Policy

A0
A40
A60
A80

A100
RL1
RL2
RL3
RL4
RL5

Po
lic

y
0.60 0.60 0.47 0.60 0.71 0.74 0.71 0.77 0.78 0.71

0.51 0.59 0.52 0.73 0.83 0.80 0.73 0.79 0.80 0.74

0.58 0.52 0.56 0.48 0.60 0.51 0.54 0.57 0.71 0.47

0.65 0.72 0.62 0.57 0.50 0.54 0.42 0.48 0.62 0.49

0.86 0.83 0.61 0.50 0.43 0.56 0.56 0.61 0.54 0.47

0.91 0.96 0.77 0.60 0.79 0.95 1.00 0.96 0.99 0.96

0.85 0.89 0.72 0.75 0.52 0.99 1.00 0.72 0.94 0.97

0.97 0.94 0.61 0.62 0.69 0.99 0.75 0.98 0.99 0.80

0.93 0.83 0.79 0.66 0.83 0.95 0.93 0.92 0.99 0.75

0.68 0.58 0.48 0.37 0.38 0.71 0.55 0.54 0.62 0.77

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Driving-v1

H1 H2 H3 H4 H5 RL1 RL2 RL3 RL4 RL5
Other Agent Policy

H1
H2

H3
H4

H5
RL

1
RL

2
RL

3
RL

4
RL

5
Po

lic
y

0.19 0.20 0.18 0.19 0.18 0.29 0.26 0.31 0.30 0.27

0.08 0.08 0.07 0.08 0.07 0.21 0.17 0.19 0.15 0.17

0.31 0.31 0.29 0.31 0.28 0.25 0.23 0.20 0.22 0.22

0.07 0.08 0.06 0.07 0.08 0.14 0.14 0.14 0.10 0.14

0.31 0.31 0.29 0.29 0.31 0.33 0.30 0.31 0.28 0.29

0.46 0.44 0.37 0.39 0.42 0.57 0.40 0.42 0.35 0.36

0.46 0.44 0.39 0.41 0.45 0.55 0.54 0.47 0.44 0.44

0.30 0.31 0.30 0.29 0.31 0.44 0.50 0.55 0.38 0.46

0.45 0.44 0.40 0.41 0.45 0.44 0.28 0.34 0.27 0.23

0.45 0.42 0.39 0.40 0.42 0.50 0.27 0.37 0.27 0.22

0.1

0.2

0.3

0.4

0.5

(c) LevelBasedForaging-v3

H1 H2 H3 RL
1

RL
2

RL
3

RL
4

RL
5

RL
6

RL
7

RL
8

Other Agent Policy

H1
H2
H3

RL1
RL2
RL3
RL4
RL5
RL6
RL7
RL8

Po
lic

y

0.12 0.13 0.32 0.39 0.27 0.20 0.46 0.43 0.40 0.39 0.43

0.18 0.19 0.40 0.59 0.49 0.39 0.59 0.48 0.63 0.48 0.59

0.30 0.35 0.41 0.60 0.61 0.47 0.58 0.55 0.63 0.46 0.65

0.37 0.59 0.54 0.68 0.67 0.61 0.74 0.72 0.70 0.61 0.66

0.31 0.45 0.63 0.68 0.83 0.70 0.73 0.66 0.63 0.65 0.65

0.24 0.43 0.44 0.59 0.67 0.74 0.66 0.59 0.54 0.60 0.52

0.47 0.58 0.56 0.65 0.70 0.67 0.76 0.68 0.76 0.65 0.69

0.37 0.45 0.52 0.66 0.69 0.58 0.72 0.61 0.83 0.61 0.75

0.34 0.53 0.69 0.73 0.67 0.56 0.77 0.83 0.49 0.89 0.66

0.47 0.47 0.37 0.63 0.65 0.62 0.64 0.60 0.87 0.45 0.81

0.44 0.44 0.63 0.68 0.64 0.56 0.72 0.76 0.69 0.82 0.76

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) PredatorPrey-v0

KL
R0

_i0
KL

R1
_i0

KL
R2

_i0
KL

R3
_i0

KL
R4

_i0
KL

RB
R_

i0
RL

1_
i0

RL
2_

i0
RL

3_
i0

RL
4_

i0
RL

5_
i0

RL
6_

i0

Other Agent Policy

KLR0_i1
KLR1_i1
KLR2_i1
KLR3_i1
KLR4_i1

KLRBR_i1
RL1_i1
RL2_i1
RL3_i1
RL4_i1
RL5_i1
RL6_i1

Po
lic

y

-0.43 -0.96 -0.02 0.16 -0.23 0.23 -0.72 -0.86 -0.74 0.06 0.46 0.31

0.62 -0.29 -0.85 -0.17 0.29 0.25 -0.03 0.15 -0.90 -0.67 -0.42 -0.14

0.15 0.72 0.03 -0.52 -0.40 0.07 0.48 0.62 0.31 -0.06 -0.10 -0.14

-0.45 -0.34 0.73 0.17 -0.62 -0.03 -0.16 -0.31 -0.10 0.39 0.53 0.25

-0.50 -0.52 0.06 0.75 0.13 -0.19 -0.57 -0.74 -0.37 0.11 0.41 0.30

-0.41 -0.22 0.48 0.70 0.29 -0.27 -0.38 -0.29 0.16 0.35 0.49 0.40

0.48 0.20 -0.52 -0.03 0.35 0.20 0.46 0.53 -0.45 -0.46 -0.08 -0.33

0.48 0.39 -0.22 0.11 0.25 0.19 0.07 0.47 -0.31 -0.91 -0.26 -0.01

0.52 0.50 -0.33 -0.10 0.27 0.07 0.36 0.61 -0.25 -0.62 -0.71 -0.21

0.38 0.31 -0.23 -0.45 -0.13 0.19 0.17 0.75 -0.29 -0.55 -0.49 -0.17

-0.55 -0.67 0.36 0.64 -0.03 -0.43 -0.84 -0.86 -0.31 0.44 0.39 0.42

-0.66 -0.09 0.10 -0.01 -0.39 -0.48 -0.20 -0.29 0.77 -0.06 0.10 0.10

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

(e) PursuitEvasion-v0 i0 (Evader)

KL
R0

_i1
KL

R1
_i1

KL
R2

_i1
KL

R3
_i1

KL
R4

_i1
KL

RB
R_

i1
RL

1_
i1

RL
2_

i1
RL

3_
i1

RL
4_

i1
RL

5_
i1

RL
6_

i1

Other Agent Policy

KLR0_i0
KLR1_i0
KLR2_i0
KLR3_i0
KLR4_i0

KLRBR_i0
RL1_i0
RL2_i0
RL3_i0
RL4_i0
RL5_i0
RL6_i0

Po
lic

y

0.43 -0.62 -0.15 0.45 0.50 0.41 -0.48 -0.48 -0.52 -0.38 0.55 0.66

0.96 0.29 -0.72 0.34 0.52 0.22 -0.20 -0.39 -0.50 -0.31 0.67 0.09

0.02 0.85 -0.03 -0.73 -0.06 -0.48 0.52 0.22 0.33 0.23 -0.36 -0.10

-0.16 0.17 0.52 -0.17 -0.75 -0.70 0.03 -0.11 0.10 0.45 -0.64 0.01

0.23 -0.29 0.40 0.62 -0.13 -0.29 -0.35 -0.25 -0.27 0.13 0.03 0.39

-0.23 -0.25 -0.07 0.03 0.19 0.27 -0.20 -0.19 -0.07 -0.19 0.43 0.48

0.72 0.03 -0.48 0.16 0.57 0.38 -0.46 -0.07 -0.36 -0.17 0.84 0.20

0.86 -0.15 -0.62 0.31 0.74 0.29 -0.53 -0.47 -0.61 -0.75 0.86 0.29

0.74 0.90 -0.31 0.10 0.37 -0.16 0.45 0.31 0.25 0.29 0.31 -0.77

-0.06 0.67 0.06 -0.39 -0.11 -0.35 0.46 0.91 0.62 0.55 -0.44 0.06

-0.46 0.42 0.10 -0.53 -0.41 -0.49 0.08 0.26 0.71 0.49 -0.39 -0.10

-0.31 0.14 0.14 -0.25 -0.30 -0.40 0.33 0.01 0.21 0.17 -0.42 -0.10

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

(f) PursuitEvasion-v0 i1 (Pursuer)

Fig. A2: Payoff tables for POSGGym agent policies for the environments used in the experiments. Each table
shows the mean returns for the row policy when paired with the column policy after 1000 episodes

Appendix B Planning Experiment Details
The implementation of the planning methods used in our experiments were based on those used in prior work
[78, 86]. The hyperparameters used are shown in Table B2. For all methods we used normalized Q-values during
planning as per [87]. For methods that used UCB (INTMCP, IPOMCP, POMCP) we used rollouts with a
random policy for leaf node evaluations. For INTMCP and POMCP actions for the other agent during rollouts
were chosen using a random policy, while for IPOMCP they were chosen using the other agent policy sampled
from the root belief. POTMMCP used the value function from its meta-search policy for leaf node evaluation
where available, otherwise used rollouts using the meta-policy for action selection. After each update we used
rejection sampling for belief reinvigoration for all methods. This was used over other methods such as weighted

29

particle filtering [127] as it did not require access to an explicit observation function and so is applicable to a
wider range of environments where only a generative model is available.

Table B2: Planning hyperparameters used in our experiments

Hyperparameter Value

Per step search time (S) [0.1, 1, 5, 10, 20]
Discount (γ) 0.99

Discount horizon (ϵ) 0.01
Belief particles ⌈100× S × 1.16⌉

CPUCB 1.25
PUCB exploration (λ) 0.25

CUCB
√
2

Appendix C Learning Experiment Details
For the learning based method (RL-BR) used in our experiments we trained a single deep RL policy πBR,k as
a BR against each population Pk ∈ [P0, P1] of other agents in each environment. PPO [120] was used as the
RL algorithm. During training at the start of each episode a policy for the other agent π−i was sampled from
a uniform distribution over the planning population being trained against and this policy was used to select
actions for the other agent −i while actions for the ego agent i were sampled from the BR policy πBR,k. In
this way each policy πBR,k was trained to maximize its expected return against the uniform mixture over the
planning population Pk.

The BR policy used the same neural network architecture used by the population policies (see Section A.1)
with a FCN trunk, followed by an LSTM layer, then finally separate FCN policy and value function heads.
The hyperparameters are shown in Table C3. We trained five separate policies using different seeds for each
combination of population and environment. Figure C3 shows the learning curve for each policy as well as the
average learning curve across seeds for each population and environment.

Table C3: Training hyperparameters for RL-BR policies used in our experiments

Hyperparameter Value

Training steps
100M (PursuitEvasion-v1 i0)
1B (PursuitEvasion-v1 i1)

32M (all other environments)
Parallel workers 32
Trunk layer sizes [64, 64]

LSTM size 64
Head layer sizes [64]

Discount (γ) 0.99
Learning rate 3× 10−4

GAE λ 0.95
Batch size 65536

Mini-batch size 2048
Rollout horizon 64
Update epochs 2

BPTT sequence length 10
Entropy bonus 0.01

Value function coeff. 0.5
Clip parameter 0.2

Global gradient clipping 10

30

0 1 2 3
Training Step 1e7

0.4

0.6

0.8

M
ea

n
Re

tu
rn

P0

0 1 2 3
Training Step 1e7

P1

(a) CooperativeReaching-v0

0 1 2 3
Training Step 1e7

0.0

0.5

1.0

M
ea

n
Re

tu
rn

P0

0 1 2 3
Training Step 1e7

P1

(b) Driving-v1

0 1 2 3
Training Step 1e7

0.0

0.2

0.4

M
ea

n
Re

tu
rn

P0

0 1 2 3
Training Step 1e7

P1

(c) LevelBasedForaging-v3

0 1 2 3
Training Step 1e7

0.25

0.50

0.75

M
ea

n
Re

tu
rn

P0

0 1 2 3
Training Step 1e7

P1

(d) PredatorPrey-v0

0.0 0.5 1.0
Training Step 1e8

0.5

0.0

0.5

M
ea

n
Re

tu
rn

P0

0.0 0.5 1.0
Training Step 1e8

P1

(e) PursuitEvasion-v1 i0 (Pursuer)

0.0 0.5 1.0
Training Step 1e9

0.5

0.0

0.5

M
ea

n
Re

tu
rn

P0

0.0 0.5 1.0
Training Step 1e9

P1

(f) PursuitEvasion-v1 i1 (Evader)

Fig. C3: Learning curves for the RL-BR policy in each environment against each policy population P0, P1.
Grey lines show the mean episode return throughout training for each of the five different seeds. The blue line
shows the average across seeds

Appendix D Generalization Results
Figure D4 shows in- vs out-of-distribution performance for each method, except INTMCP and POMCP which
only have out-of-distribution results.

0 5 10 15 20
Search Time (s)

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
Re

tu
rn

COMBINED

0 5 10 15 20
Search Time (s)

IPOMCP

0 5 10 15 20
Search Time (s)

POTMMCP

0 5 10 15 20
Search Time (s)

RL-BR

In Distribution
True
False

Fig. D4: In-distribution (Pplan = Ptest) versus out-of-distribution (Pplan ̸= Ptest) performance for each envi-
ronment for planning (IPOMCP, POTMMCP), learning (RL-BR), and combined methods across planning
budgets (x-axis)

31

References
[1] Blythe, J.: Decision-theoretic planning. AI magazine 20(2), 37–37 (1999)

[2] Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: Structural assumptions and computational
leverage. Journal of Artificial Intelligence Research 11, 1–94 (1999)

[3] Smallwood, R.D., Sondik, E.J.: The optimal control of partially observable Markov processes over a finite
horizon. Operations research 21(5), 1071–1088 (1973)

[4] Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic
domains. Artificial Intelligence 101(1-2), 99–134 (1998)

[5] Seuken, S., Zilberstein, S.: Formal models and algorithms for decentralized decision making under
uncertainty. Autonomous Agents and Multi-Agent Systems 17, 190–250 (2008)

[6] Hansen, E.A., Bernstein, D.S., Zilberstein, S.: Dynamic programming for partially observable stochastic
games. In: AAAI, vol. 4, pp. 709–715 (2004)

[7] Kurniawati, H.: Partially Observable Markov Decision Processes and Robotics. Annual Review of Control,
Robotics, and Autonomous Systems 5(1), 253–277 (2022)

[8] Woodward, M.P., Wood, R.J.: Learning from humans as an I-POMDP. arXiv preprint arXiv:1204.0274
(2012)

[9] Carr, S., Jansen, N., Bharadwaj, S., Spaan, M.T., Topcu, U.: Safe policies for factored partially observable
stochastic games. In: Robotics: Science and Systems (2021)

[10] Seymour, R., Peterson, G.L.: A trust-based multiagent system. International Conference on Computa-
tional Science and Engineering 3, 109–116 (2009)

[11] Ng, B., Meyers, C., Boakye, K., Nitao, J.: Towards applying interactive POMDPs to real-world adversary
modeling. In: Innovative Applications of Artificial Intelligence (2010)

[12] Bernstein, D., Givan, R., Immerman, N., Zilberstein, S.: The Complexity of Decentralized Control of
Markov Decision Processes. Mathematics of Operations Research 27(4) (2002)

[13] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553) (2015)

[14] Kaplan, J., McCandlish, S., Henighan, T., Brown, T.B., Chess, B., Child, R., Gray, S., Radford, A., Wu,
J., Amodei, D.: Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020)

[15] Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M.: Mastering the game of Go with deep neural networks
and tree search. nature 529(7587) (2016)

[16] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran,
D., Graepel, T.: A general reinforcement learning algorithm that masters chess, shogi, and Go through
self-play. Science 362(6419), 1140–1144 (2018)

[17] Brown, N., Sandholm, T.: Superhuman AI for heads-up no-limit poker: Libratus beats top professionals.
Science 359(6374) (2018)

[18] Brown, N., Bakhtin, A., Lerer, A., Gong, Q.: Combining deep reinforcement learning and search for
imperfect-information games. Advances in Neural Information Processing Systems 33, 17057–17069
(2020)

[19] Lerer, A., Hu, H., Foerster, J., Brown, N.: Improving policies via search in cooperative partially observable
games. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 7187–7194 (2020)

32

[20] Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C., Farhi, D., Fischer, Q., Hashme,
S., Hesse, C.: Dota 2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680 (2019)

[21] Vinyals, O., Babuschkin, I., Czarnecki, W., Mathieu, M., Dudzik, A., Chung, J., Choi, D., Powell, R.,
Ewalds, T., Georgiev, P.: Grandmaster level in StarCraft II using multi-agent reinforcement learning.
Nature 575(7782) (2019)

[22] Perolat, J., De Vylder, B., Hennes, D., Tarassov, E., Strub, F., de Boer, V., Muller, P., Connor, J., Burch,
N., Anthony, T.: Mastering the game of Stratego with model-free multiagent reinforcement learning.
Science 378(6623) (2022)

[23] Ye, D., Liu, Z., Sun, M., Shi, B., Zhao, P., Wu, H., Yu, H., Yang, S., Wu, X., Guo, Q., et al.: Mastering
complex control in moba games with deep reinforcement learning. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, pp. 6672–6679 (2020)

[24] Terry, J., Black, B., Grammel, N., Jayakumar, M., Hari, A., Sullivan, R., Santos, L.S., Dieffendahl, C.,
Horsch, C., Perez-Vicente, R., et al.: Pettingzoo: Gym for multi-agent reinforcement learning. Advances
in Neural Information Processing Systems 34, 15032–15043 (2021)

[25] Leibo, J.Z., Dueñez-Guzman, E.A., Vezhnevets, A., Agapiou, J.P., Sunehag, P., Koster, R., Matyas, J.,
Beattie, C., Mordatch, I., Graepel, T.: Scalable evaluation of multi-agent reinforcement learning with
melting pot. In: International Conference on Machine Learning, pp. 6187–6199 (2021). PMLR

[26] Samvelyan, M., Rashid, T., De Witt, C.S., Farquhar, G., Nardelli, N., Rudner, T.G., Hung, C.-M., Torr,
P.H., Foerster, J., Whiteson, S.: The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043
(2019)

[27] Ellis, B., Cook, J., Moalla, S., Samvelyan, M., Sun, M., Mahajan, A., Foerster, J., Whiteson, S.:
Smacv2: An improved benchmark for cooperative multi-agent reinforcement learning. Advances in Neural
Information Processing Systems 36, 37567–37593 (2023)

[28] Lanctot, M., Lockhart, E., Lespiau, J.-B., Zambaldi, V., Upadhyay, S., Pérolat, J., Srinivasan, S., Timbers,
F., Tuyls, K., Omidshafiei, S., et al.: Openspiel: A framework for reinforcement learning in games. arXiv
preprint arXiv:1908.09453 (2019)

[29] Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Goldberg, K., Gonzalez, J., Jordan, M., Stoica,
I.: Rllib: Abstractions for distributed reinforcement learning. In: International Conference on Machine
Learning, pp. 3053–3062 (2018). PMLR

[30] Huang, S., Dossa, R.F.J., Ye, C., Braga, J., Chakraborty, D., Mehta, K., AraÃšjo, J.G.: Cleanrl:
High-quality single-file implementations of deep reinforcement learning algorithms. Journal of Machine
Learning Research 23(274), 1–18 (2022)

[31] Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-baselines3: Reliable
reinforcement learning implementations. Journal of machine learning research 22(268), 1–8 (2021)

[32] Petrenko, A., Huang, Z., Kumar, T., Sukhatme, G., Koltun, V.: Sample factory: Egocentric 3d control
from pixels at 100000 fps with asynchronous reinforcement learning. In: International Conference on
Machine Learning, pp. 7652–7662 (2020). PMLR

[33] Boutilier, C.: Planning, learning and coordination in multiagent decision processes. Conference on
Theoretical Aspects of Rationality and Knowledge (1996)

[34] Shapley, L.: Stochastic games. Proceedings of the National Academy of Sciences 39(10) (1953)

[35] Albrecht, S.V., Stone, P.: Autonomous agents modelling other agents: A comprehensive survey and open
problems. Artificial Intelligence 258, 66–95 (2018)

[36] Oliehoek, F.A., Amato, C., et al.: A Concise Introduction to Decentralized POMDPs vol. 1. Springer

33

International Publishing, Cham, Switzerland (2016)

[37] Gmytrasiewicz, P.J., Doshi, P.: A framework for sequential planning in multi-agent settings. Journal of
Artificial Intelligence Research 24, 49–79 (2005)

[38] Bowling, M., McCracken, P.: Coordination and adaptation in impromptu teams. In: AAAI, vol. 5, pp.
53–58 (2005)

[39] Stone, P., Kaminka, G., Kraus, S., Rosenschein, J.: Ad hoc autonomous agent teams: Collaboration
without pre-coordination. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 24, pp.
1504–1509 (2010)

[40] Albrecht, S.V., Stone, P.: Reasoning about hypothetical agent behaviours and their parameters. In:
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, pp. 547–555 (2017)

[41] Coulom, R.: Efficient selectivity and backup operators in monte-carlo tree search. In: International
Conference on Computers and Games, pp. 72–83 (2006). Springer

[42] Silver, D., Veness, J.: Monte-Carlo Planning in Large POMDPs. Advances in neural information
processing systems 23 (2010)

[43] Roy, N., Gordon, G., Thrun, S.: Finding approximate POMDP solutions through belief compression.
Journal of artificial intelligence research 23, 1–40 (2005)

[44] Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Machine
learning 47(2), 235–256 (2002)

[45] Rosin, C.D.: Multi-armed bandits with episode context. Annals of Mathematics and Artificial Intelligence
61(3), 203–230 (2011)

[46] Sutton, R.S., Barto, A.G., et al.: Reinforcement Learning: An Introduction vol. 1. MIT press, Cambridge
(1998)

[47] Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult.
IEEE transactions on neural networks 5(2), 157–166 (1994)

[48] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997)

[49] Hausknecht, M., Stone, P.: Deep Recurrent Q-Learning for Partially Observable MDPs. In: 2015 AAAI
Fall Symposium Series (2015)

[50] Heinrich, J., Lanctot, M., Silver, D.: Fictitious self-play in extensive-form games. In: International
Conference on Machine Learning, pp. 805–813 (2015). PMLR

[51] Tesauro, G.: TD-Gammon, a self-teaching backgammon program, achieves master-level play. Neural
computation 6(2) (1994)

[52] Brown, N., Sandholm, T.: Superhuman AI for multiplayer poker. Science 365(6456), 885–890 (2019)

[53] Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A., Tuyls, K., Pérolat, J., Silver, D., Graepel, T.: A
unified game-theoretic approach to multiagent reinforcement learning. Advances in Neural Information
Processing Systems 30 (2017)

[54] Gleave, A., Dennis, M., Wild, C., Kant, N., Levine, S., Russell, S.: Adversarial Policies: Attacking Deep
Reinforcement Learning. In: International Conference on Learning Representations (2019)

[55] Jaderberg, M., Czarnecki, W., Dunning, I., Marris, L., Lever, G., Castaneda, A.G., Beattie, C.,
Rabinowitz, N., Morcos, A., Ruderman, A.: Human-level performance in 3D multiplayer games with
population-based reinforcement learning. Science 364(6443) (2019)

34

[56] Team, O.E.L., Stooke, A., Mahajan, A., Barros, C., Deck, C., Bauer, J., Sygnowski, J., Trebacz, M.,
Jaderberg, M., Mathieu, M.: Open-ended learning leads to generally capable agents. arXiv preprint
arXiv:2107.12808 (2021)

[57] Cui, B., Hu, H., Pineda, L., Foerster, J.: K-level reasoning for zero-shot coordination in hanabi. Advances
in Neural Information Processing Systems 34, 8215–8228 (2021)

[58] He, H., Boyd-Graber, J., Kwok, K., Hal Daumé, I.I.I.: Opponent Modeling in Deep Reinforcement
Learning. International Conference on Machine Learning, 1804–1813 (2016)

[59] Bakhtin, A., Wu, D.J., Lerer, A., Gray, J., Jacob, A.P., Farina, G., Miller, A.H., Brown, N.: Mastering
the Game of No-Press Diplomacy via Human-Regularized Reinforcement Learning and Planning. In:
International Conference on Learning Representations (2022)

[60] Rutherford, A., Ellis, B., Gallici, M., Cook, J., Lupu, A., Ingvarsson, G., Willi, T., Khan, A., Witt, C.S.,
Souly, A., Bandyopadhyay, S., Samvelyan, M., Jiang, M., Lange, R.T., Whiteson, S., Lacerda, B., Hawes,
N., Rocktäschel, T., Lu, C., Foerster, J.N.: JaxMARL: Multi-agent RL environments in JAX. In: Second
Agent Learning in Open-Endedness Workshop (2023). https://openreview.net/forum?id=BlhQN9Jfpf

[61] Suarez, J., Du, Y., Isola, P., Mordatch, I.: Neural MMO: A massively multiagent game environment for
training and evaluating intelligent agents. arXiv preprint arXiv:1903.00784 (2019)

[62] Zheng, L., Yang, J., Cai, H., Zhou, M., Zhang, W., Wang, J., Yu, Y.: Magent: A many-agent reinforcement
learning platform for artificial collective intelligence. AAAI 32 (2018)

[63] Lechner, M., Yin, L., Seyde, T., Wang, T.-H., Xiao, W., Hasani, R., Rountree, J., Rus, D.: Gigastep -
One Billion Steps per Second Multi-agent Reinforcement Learning. In: Thirty-Seventh Conferences on
Neural Information Processing Systems Datasets and Benchmarks Track (2023)

[64] Lopez, P.A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y.-P., Hilbrich, R., Lücken, L.,
Rummel, J., Wagner, P., Wießner, E.: Microscopic traffic simulation using sumo. International conference
on intelligent transportation systems, 2575–2582 (2018)

[65] Zhang, H., Feng, S., Liu, C., Ding, Y., Zhu, Y., Zhou, Z., Zhang, W., Yu, Y., Jin, H., Li, Z.: Cityflow:
A multi-agent reinforcement learning environment for large scale city traffic scenario. The World Wide
Web Conference (2019)

[66] Tunyasuvunakool, S., Muldal, A., Doron, Y., Liu, S., Bohez, S., Merel, J., Erez, T., Lillicrap, T., Heess,
N., Tassa, Y.: Dm_control: Software and tasks for continuous control. Software Impacts 6 (2020)

[67] Peng, B., Rashid, T., Witt, C., Kamienny, P.-A., Torr, P., Böhmer, W., Whiteson, S.: Facmac: Factored
multi-agent centralised policy gradients. Advances in Neural Information Processing Systems 34, 12208–
12221 (2021)

[68] Papoudakis, G., Christianos, F., Schäfer, S. Lukas andAlbrecht: Benchmarking multi-agent deep rein-
forcement learning algorithms in cooperative tasks. Advances in Neural Information Processing Systems
Track on Datasets and Benchmarks (2021)

[69] Zha, D., Lai, K.-H., Cao, Y., Huang, S., Wei, R., Guo, J., Hu, X.: RLCard: A Toolkit for Reinforcement
Learning in Card Games. arxiv preprint arXiv:1910.04376 (2019)

[70] Koyamada, S., Okano, S., Nishimori, S., Murata, Y., Habara, K., Kita, H., Ishii, S.: Pgx: Hardware-
accelerated parallel game simulators for reinforcement learning. Advances in Neural Information
Processing Systems 36, 45716–45743 (2023)

[71] Osborne, M., Rubinstein, A.: A Course in Game Theory. MIT press, Cambridge (1994)

[72] Spaan, M., Oliehoek, F.: The MultiAgent Decision Process toolbox: Software for decision-theoretic plan-
ning in multiagent systems. Proceedings of the AAMAS Workshop on Multi-Agent Sequential Decision

35

Making in Uncertain Domains (MSDM) (2008)

[73] Carmo Alves, M.A., Varma, A., Elkhatib, Y., Soriano Marcolino, L.: Adleap-mas: An open-source multi-
agent simulator for ad-hoc reasoning. In: Proceedings of the 21st International Conference on Autonomous
Agents and Multiagent Systems, pp. 1893–1895 (2022)

[74] Wu, F., Zilberstein, S., Chen, X.: Online Planning for Ad Hoc Autonomous Agent Teams. In: International
Joint Conference on Artificial Intelligence (2011)

[75] Barrett, S., Stone, P., Kraus, S.: Empirical evaluation of ad hoc teamwork in the pursuit domain. In:
Autonomous Agents and Multiagent Systems, pp. 567–574 (2011)

[76] Barrett, S., Agmon, N., Hazon, N., Kraus, S., Stone, P.: Communicating with Unknown Teammates.
In: Proceedings of the International Conference on Autonomous Agents and Multi-agent Systems, pp.
1433–1434 (2014)

[77] Yourdshahi, E.S., Pinder, T., Dhawan, G., Marcolino, L.S., Angelov, P.: Towards large scale ad-hoc
teamwork. In: International Conference on Agents, pp. 44–49 (2018)

[78] Schwartz, J., Kurniawati, H., Hutter, M.: Combining a Meta-Policy and Monte-Carlo Planning for
Scalable Type-Based Reasoning in Partially Observable Environments. arXiv preprint arXiv:2306.06067
(2023)

[79] Czechowski, A., Oliehoek, F.A.: Decentralized MCTS via learned teammate models. In: International
Joint Conferences on Artificial Intelligence, pp. 81–88 (2021)

[80] Choudhury, S., Gupta, J.K., Morales, P., Kochenderfer, M.J.: Scalable Online Planning for Multi-Agent
MDPs. Journal of Artificial Intelligence Research 73, 821–846 (2022)

[81] Cowling, P.I., Powley, E.J., Whitehouse, D.: Information set monte carlo tree search. Transactions on
Computational Intelligence and AI in Games 4(2), 120–143 (2012)

[82] Amato, C., Oliehoek, F.: Scalable planning and learning for multiagent POMDPs. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 29 (2015)

[83] Panella, A., Gmytrasiewicz, P.: Interactive POMDPs with finite-state models of other agents.
Autonomous Agents and Multi-Agent Systems 31, 861–904 (2017)

[84] Kakarlapudi, A., Anil, G., Eck, A., Doshi, P., Soh, L.-K.: Decision-Theoretic Planning with Commu-
nication in Open Multiagent Systems. In: Uncertainty in Artificial Intelligence, pp. 938–948 (2022).
PMLR

[85] Eck, A., Shah, M., Doshi, P., Soh, L.-K.: Scalable decision-theoretic planning in open and typed
multiagent systems. AAAI (2020)

[86] Schwartz, J., Zhou, R., Kurniawati, H.: Online planning for interactive-POMDPs using nested monte
carlo tree search. In: International Conference on Intelligent Robots and Systems, pp. 8770–8777 (2022).
IEEE

[87] Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A., Lockhart,
E., Hassabis, D., Graepel, T.: Mastering atari, go, chess and shogi by planning with a learned model.
Nature 588(7839), 604–609 (2020)

[88] Timbers, F., Bard, N., Lockhart, E., Lanctot, M., Schmid, M., Burch, N., Schrittwieser, J., Hubert, T.,
Bowling, M.: Approximate Exploitability: Learning a Best Response. In: Proceedings of the International
Joint Conference on Artificial Intelligence, pp. 3487–3493 (2022)

[89] Hu, H., Lerer, A., Brown, N., Foerster, J.: Learned belief search: Efficiently improving policies in partially
observable settings. arxiv preprint arXiv:2106.09086 (2021)

36

[90] Li, Z., Lanctot, M., McKee, K.R., Marris, L., Gemp, I., Hennes, D., Muller, P., Larson, K., Bachrach, Y.,
Wellman, M.P.: Combining Tree-Search, Generative Models, and Nash Bargaining Concepts in Game-
Theoretic Reinforcement Learning. arxiv preprint arXiv:2302.00797 (2023)

[91] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.: OpenAI
Gym. arXiv preprint arXiv:1606.01540 (2016)

[92] Foundation, F.: Gymnasium. GitHub (2022)

[93] Ross, S., Pineau, J., Paquet, S., Chaib-Draa, B.: Online Planning Algorithms for POMDPs. Journal of
Artificial Intelligence Research 32, 663–704 (2008)

[94] Tabrez, A., Luebbers, M.B., Hayes, B.: A survey of mental modeling techniques in human–robot teaming.
Current Robotics Reports 1, 259–267 (2020)

[95] Ooi, J., Wornell, G.: Decentralized control of a multiple access broadcast channel: Performance bounds.
Conference on Decision and Control 1 (1996)

[96] Dibangoye, J.S., Amato, C., Buffet, O., Charpillet, F.: Optimally solving Dec-POMDPs as continuous-
state mdps. Journal of Artificial Intelligence Research 55, 443–497 (2016)

[97] Peralez, J., Delage, A., Buffet, O., Dibangoye, J.S.: Solving hierarchical information-sharing Dec-
POMDPs: an extensive-form game approach. In: Proceedings of the 41st International Conference on
Machine Learning, pp. 40414–40438 (2024)

[98] Doshi, P., Gmytrasiewicz, P.J.: A particle filtering based approach to approximating interactive POMDPs.
In: AAAI, pp. 969–974 (2005)

[99] Doshi, P., Perez, D.: Generalized point based value iteration for interactive POMDPs. In: AAAI, pp.
63–68 (2008)

[100] Sonu, E., Doshi, P.: Scalable solutions of interactive POMDPs using generalized and bounded policy
iteration. Autonomous Agents and Multi-Agent Systems 29, 455–494 (2015)

[101] Rahman, A., Cui, J., Stone, P.: Generating teammates for training robust ad hoc teamwork agents via
best-response diversity. In: AAAI (2024)

[102] Rahman, M., Cui, J., Stone, P.: Minimum coverage sets for training robust ad hoc teamwork agents. In:
AAAI, vol. 38, pp. 17523–17530 (2024)

[103] Christianos, F., Schäfer, L., Albrecht, S.: Shared experience actor-critic for multi-agent reinforcement
learning. Advances in neural information processing systems 33, 10707–10717 (2020)

[104] Papoudakis, G., Christianos, F., Albrecht, S.: Agent modelling under partial observability for deep
reinforcement learning. Advances in Neural Information Processing Systems 34, 19210–19222 (2021)

[105] Rahman, A., Carlucho, I., Höpner, N., Albrecht, S.V.: A general learning framework for open ad hoc
teamwork using graph-based policy learning. Journal of Machine Learning Research 24(298), 1–74 (2023)

[106] McKee, K.R., Leibo, J.Z., Beattie, C., Everett, R.: Quantifying the effects of environment and population
diversity in multi-agent reinforcement learning. Autonomous Agents and Multi-Agent Systems 36(1), 21
(2022)

[107] Lerer, A., Peysakhovich, A.: Learning existing social conventions via observationally augmented self-play.
In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pp. 107–114 (2019)

[108] Tan, M.: Multi-agent reinforcement learning: Independent vs cooperative agents. In: Proceedings of the
Tenth International Conference on Machine Learning, pp. 330–337 (1993)

37

[109] Leibo, J., Zambaldi, V., Lanctot, M., Marecki, J., Graepel, T.: Multi-agent Reinforcement Learning in
Sequential Social Dilemmas. Autonomous Agents and Multi-Agent Systems 16, 464–473 (2017)

[110] Xing, D., Liu, Q., Zheng, Q., Pan, G., Zhou, Z.: Learning with generated teammates to achieve type-free
ad-hoc teamwork. In: International Joint Conference on Artificial Intelligence, pp. 472–478 (2021)

[111] O’Callaghan, D., Mannion, P.: Tunable behaviours in sequential social dilemmas using multi-objective
reinforcement learning. In: Autonomous Agents and Multi-Agent Systems, pp. 1610–1612 (2021)

[112] Seaman, I.R., van de Meent, J.-W., Wingate, D.: Nested Reasoning About Autonomous Agents Using
Probabilistic Programs. arXiv preprint arXiv:1812.01569 (2018)

[113] Blomqvist, V.: Pymunk (2023). https://pymunk.org

[114] Gupta, J., Egorov, M., Kochenderfer, M.: Cooperative multi-agent control using deep reinforcement
learning. Autonomous Agents and Multi-Agent Systems, 66–83 (2017)

[115] De Souza, C., Newbury, R., Cosgun, A., Castillo, P., Vidolov, B., Kulić, D.: Decentralized multi-agent
pursuit using deep reinforcement learning. Robotics and Automation Letters 6(3) (2021)

[116] de Souza, C., Castillo, P., Vidolov, B.: Local interaction and navigation guidance for hunters drones: A
chase behavior approach with real-time tests. Robotica 40(8) (2022)

[117] Angelani, L.: Collective predation and escape strategies. Physical Review Letters 109(11) (2012)

[118] Janosov, M., Virágh, C., Vásárhelyi, G., Vicsek, T.: Group chasing tactics: How to catch a faster prey.
New Journal of Physics (2017)

[119] Albrecht, S., Crandall, J., Ramamoorthy, S.: Belief and truth in hypothesised behaviours. Artificial
Intelligence 235, 63–94 (2016)

[120] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347 (2017)

[121] Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Powell, G., McGrew, B., Mordatch, I.: Emergent Tool
Use From Multi-Agent Autocurricula. International Conference on Learning Representations (2019)

[122] Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen, A., Wu, Y.: The surprising effectiveness of ppo
in cooperative multi-agent games. Advances in Neural Information Processing Systems 35, 24611–24624
(2022)

[123] Fickinger, A., Hu, H., Amos, B., Russell, S., Brown, N.: Scalable online planning via reinforcement
learning fine-tuning. Advances in Neural Information Processing Systems 34, 16951–16963 (2021)

[124] Lupu, A., Cui, B., Hu, H., Foerster, J.: Trajectory diversity for zero-shot coordination. In: International
Conference on Machine Learning, pp. 7204–7213. PMLR

[125] Xing, D., Liu, Q., Zheng, Q., Pan, G., Zhou, Z.H.: Learning with Generated Teammates to Achieve
Type-Free Ad-Hoc Teamwork. In: International Joint Conference on Artificial Intelligence, pp. 472–478
(2021)

[126] Witt, C., Gupta, T., Makoviichuk, D., Makoviychuk, V., Torr, P., Sun, M., Whiteson, S.: Is Independent
Learning All You Need in the StarCraft Multi-Agent Challenge? arxiv preprint arXiv:2011.09533 (2020)

[127] Sunberg, Z., Kochenderfer, M.: Online Algorithms for POMDPs with Continuous State, Action, and
Observation Spaces. International Conference on Automated Planning and Scheduling 28, 259–263
(2018)

38

https://pymunk.org

	Introduction
	Background
	Partially Observable Stochastic Games
	Decision-Theoretic Planning
	Beliefs
	Monte Carlo Planning

	Reinforcement Learning

	Related Work
	Multi-Agent Libraries
	Multi-Agent Planning
	Combined Planning and Learning

	POSGGym
	API Design
	Environment API
	Model API
	Agent API

	Environments
	Classic
	Grid-World
	Continuous

	Reference Agents
	Environment and Model Customization and Control
	Computational Requirements and Performance

	Experiments
	Experiment Setup
	Planning Methods
	Learning Method
	Combined Planning and Learning Method
	Experiment Environments
	Experiment Results
	Overall Results
	For the in-distribution setting, combining planning and learning improves on either approach alone, given enough planning time.
	The learning method (RL-BR) outperforms all pure planning methods in both in- and out-of-distribution settings.
	Monotonic improvement in performance with search time is evident for all planning and combined methods in the in-distribution setting, contrasting with the out-of-distribution setting.
	A large gap exists between in- and out-of-distribution performance across all methods.

	In-Distribution Performance
	In some cases, combining planning and learning can lead to deteriorating performance as the planning budget increases.
	At least one planning method equals or exceeds the learning (RL-BR) method given sufficient planning time in four of six environments.

	Out-of-Distribution Performance
	Combining learning and planning leads to worse performance than learning alone in four of six environments.
	Planning methods that modeled the other agent naively (POMCP) or recursively (INTMCP) generally performed worse than other approaches.
	Planning methods performed no better or even worse than pure learning in five out of six environments.
	Increasing search budget did not consistently lead to monotonically improving performance for planning methods.

	Experimental Limitations

	Conclusion and Future Directions
	Agent Populations
	Reinforcement Learning Policy Training
	K-Level Reasoning
	Self-Play

	Experiment Populations

	Planning Experiment Details
	Learning Experiment Details
	Generalization Results

