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Abstract Many methods for planning under uncertainty operate in the belief space,
i.e., the set of distributions over states. Although the problem is computationally
hard, recent advances have shown that belief-space planning is becoming practi-
cal for many medium size problems. Some of the most successful methods utilize
sampling and often rely on distances between beliefs to partially guide the search
process. This paper deals with the question of what is a suitable distance func-
tion for belief space planning, which despite its importance remains unanswered.
This work indicates that the rarely used Wasserstein distance (also known as Earth
Mover’s Distance (EMD)) is a more suitable metric than the commonly used L1

and Kullback-Leibler (KL) for belief-space planning. Simulation results on Non-
Observable Markov Decision Problems, i.e., the simplest class of belief-space plan-
ning, indicate that as the problem becomes more complex, the differences on the ef-
fectiveness of different distance functions become quite prominent. In fact, in state
spaces with more than 4 dimensions, by just replacing L1 or KL distance with EMD,
the problems become from virtually unsolvable to solvable within a reasonable time
frame. Furthermore, preliminary results on Partially Observable Markov Decision
Processes indicate that point-based solvers with EMD use a smaller number of sam-
ples to generate policies with similar qualities, compared to those with L1 and KL.
This paper also shows that EMD caries the Lipschitz continuity of the cost of the
states to Lipschitz continuity of the expected cost of the beliefs. Such a continuity
property is often critical for convergence to optimal solutions.

1 Introduction
Uncertainty is ubiquitous, since sensing is never perfect, actuators have errors,

and a robot’s operating environment is often unknown. Due to this imperfect infor-
mation and errors, the exact robot state is never perfectly known. Therefore, instead
of finding an optimal solution in the state space, many methods represent uncertainty
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about the robot state as a probability distribution, and plan in the set of distributions
over states, called the belief space [13, 22, 23, 29]. The computational complexity of
planning in the belief space is much higher than in the state space because the size
of the belief space is doubly exponential in the number of state space dimensions.
Nevertheless, recent advances have shown that motion planning in belief space is
becoming practical for many medium size problems [6, 1, 10, 30].

Background: Interestingly, progress in belief-space planning has been achieved
through similar tools to those used for progress in the deterministic case. In particu-
lar, this progress was achieved by sampling a small set of representative beliefs and
planning with respect to only this small set of sampled beliefs. In fact, many meth-
ods (e.g., [3, 16, 23]) in belief-space planning are extensions of sampling-based ones
for the deterministic case, such as PRM, RRT, PRM∗, and RRG [4, 7]. These methods
typically restrict beliefs to be represented by Gaussian parameters or consider the
maximum likelihood estimate of the state.

Recent work, which has shown that one can achieve asymptotic optimality with-
out a steering function in the deterministic case [15, 18], has the potential to allow an
even more straightforward way to extend sampling-based planners to belief-space
planning. The similarity between deterministic planning without a steering function
and belief-space planning indicate that properties critical for deterministic motion
planning are likely to be critical for belief-space motion planning as well.

Similar to sampling-based methods for the deterministic case, many equivalent
approaches for belief-space planning rely on distances between beliefs to partially
guide their sampling and pruning operations [8, 13, 27]. Many distance functions
can be potentially used and they can have significantly different effects in belief-
space planning. Nevertheless, the effectiveness of the different distance functions
has not been studied in the related literature on belief-space planning.

This paper focuses on understanding the suitability of commonly used distance
functions in belief-space motion planning. Commonly used functions, such as L1

and KL, in general ignore the underlying distance in the state space. As a result, two
beliefs, whose supports do not overlap but lie near to each other in the state space,
will have the same distance as two beliefs whose support lie very far away. Fig. 1
illustrates this issue. If the support of the beliefs is unbounded, the above problems
are less severe, though they still exist. To the best of the authors’ knowledge, the
Wasserstein or Earth Mover’s Distance (EMD) EMD has limited use in the related
literature [12, 14], even though it alleviates the aforementioned issue. This paper
presents a comparative study of the effect of these metrics in two classes of belief
space planning, i.e., the Non-Observable Markov Decision Processes (NOMDPs) and
the Partially Observable Markov Decision Processes (POMDPs).

Fig. 1 Illustration of the problem with L1 and KL. Suppose the state space X is the 1-dim. natural
numbers and the distance dX(x,x′) = |x− x′|. Then, the L1 distance DL1(b1,b2) = DL1(b1,b3), the
KL distance DKL(b1,b2) = DKL(b1,b3), and the EMD distance DW (b1,b2)< DW (b1,b3).
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NOMDP Evaluation: NOMDP is the simplest class of belief-space planning, a
planning under uncertainty challenge where no observation is available. Despite
its simplicity, NOMDP has often been applied as an intermediate solution to com-
plex planning under uncertainty problems, e.g., in [9]. The simplicity of this class
of problems allow us to compare the metric on various complex motion planning
problems, which are still unsolvable when the challenge is partially observable. To
solve NOMDPs, this paper leverages recent results in deterministic motion planning
that show asymptotically optimal solutions [7] can be computed by sampling-based
methods that do not require steering functions [15, 18]. These methods are extended
to solve NOMDP problems. Such extensions are simpler compared to extending meth-
ods that require steering function, because computing a good steering function in
the belief space is non-trivial. Simulation results indicate that as the NOMDP problem
becomes more complex, the differences on the effectiveness of different distance
functions become quite prominent. In fact, in state spaces with more than 4 dimen-
sions, just by replacing L1 or KL distance with EMD, the speed of solving the prob-
lems improves substantially and the problems transition from virtually unsolvable
to solvable.

POMDP Evaluation: The second class of problems in our comparative study
is the Partially Observable Markov Decision Processes (POMDP). To solve POMDP

problems, Monte Carlo Value Iteration (MCVI)[2] is used here, which is an offline
POMDP-solver designed for problems with continuous state space. In this paper, we
only apply the various metrics to a 2D navigation problem when evaluating the per-
formance in the POMDP framework, due to the limitation of existing POMDP solvers in
solving problems with large action spaces. Although this limitation means we can-
not yet show the full potential of EMD in POMDP, the preliminary result reveals that
EMD could significantly reduce the number of belief-space samples that sampling-
based POMDP-solvers need to reach certain solution quality.

Overall Contributions: The results of our comparative study indicate that EMD
is more suitable than L1 and KL, and could significantly improve the performance
of belief space planning, even though its computation can be computationally more
expensive. Steps towards the efficient computation of the EMD are also described in
this work. Furthermore, this paper shows that EMD carries the Lipschitz continuity
of the cost function in the state space to Lipschitz continuity of expected cost in the
belief space. This is useful because this property is used in the convergence anal-
ysis of several asymptotically optimal motion planning methods without a steering
function [15, 18], including methods for belief-space planning [11, 13].

2 Problem Setup for Comparative Study
A POMDP is a mathematically principled framework for planning under uncer-

tainty in discrete-time. Formally, a POMDP is defined as a tuple 〈S,A,O,T,Z,R,b0,γ〉,
where S is the set of states, A is the set of actions, and O is the set of observations.
The notation T represents motion uncertainty and is defined as a conditional prob-
ability function T (s,a,s′) = f (s′|s,a), where s,s′ ∈ S and a ∈ A. The notation Z
represents sensing uncertainty and is defined as a conditional probability function
Z(s′,a,o) = f (o|s′,a), where s′ ∈ S, a∈ A, and o∈O. At each step, a POMDP agent
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is in a state s ∈ S, takes an action a ∈ A, moves from s to an end state s′ ∈ S, per-
ceives an observation o ∈ O, and receives a reward R(s,a) for taking action a from
state s. However, a POMDP agent never know this exact state, and instead reasons
with respect to distributions over states, called beliefs. At each step, its belief esti-
mate is updated based on the action and observation it just performed and perceived.
The agent’s goal is to choose a suitable sequence of actions that will maximize its
expected total reward, when the agent starts from the initial belief b0. When the se-
quence of actions has infinite length, a discount factor γ ∈ (0,1) is specified, so that
the total reward is finite and the problem is well defined.

The solution to a POMDP problem is a mapping from beliefs to the best actions,
and is called an optimal policy. A policy π induces a value function Vπ(b) which
specifies the expected total reward of executing policy π from belief b, and is com-
puted as Vπ(b) = E[∑∞

t=0 γ tR(st ,at)|b,π]. An optimal policy is the policy π∗ whose
value function Vπ∗(b) is the highest among all possible policies for any belief b.

An NOMDP is a class of POMDP where observations are not available, i.e., O= {na}
and Z(s,a,na) = 1 for any s ∈ S and a ∈ A. As a consequence, the solution of an
NOMDP is a nominal path, which maps time-steps to the best actions.

The problem setup for both NOMDPs and POMDPs are geared towards motion plan-
ning problems, finding a strategy to move from one state to another. Both NOMDPs
and POMDPs use the same representation for state and action spaces, and for mo-
tion uncertainty. The state space is a continuous metric space, denoted by X, that
is diffeomorphic to Rn, where n is the dimensionality of X. The action space is the
same as the control space, denoted as U, and typically has lower or equal dimension
than X. The motion uncertainty comes from actuation error, and is represented as a
stochastic dynamical system:

x(t +∆ t) = x(t)+ f (x(t), ũ(t)) ·∆ t (1)
where x(t) ∈ X, ũ(t) ∈ U and ∆ t is a discrete time step. The control ũ(t) is the one
executed by the system, which does not always correspond to the input control u(t)
due to actuation error, i.e., there is an error vector w based on which:

ũ(t) = u(t)+w (2)
The vector w is additive noise sampled from a probability distribution, which can be
any type of distribution.

Given that NOMDPs do not have observations, NOMDPs and POMDPs differ in the
objective function. NOMDPs use an objective function that is commonly used in mo-
tion planning. The goal of an NOMDP problem in this paper is to find a sequence of
control inputs that minimizes the cost, while ensuring that the collision probability
is lower than a given threshold and the probability of reaching the goal is higher
than a given threshold. More precisely, suppose p = (u1,u2, . . . ,um) is the sequence
of input controls for the system. Each control input in the sequence is applied for a
unit time step, subsequently starting from the initial belief b0. This application will
induce a trajectory π

p
b = (b0,b1,b2, . . . ,bm) that arises when applying Eq. 1 to the

states in the support set of belief b0 and following the sequence p, given the noise
model w. The duration of a trajectory π is denoted as Tπ . If the trajectory π is in-
duced by p with controls for m time steps, then Tπ = m ·∆ t. A belief state along a



The Importance of a Suitable Distance Function in Belief-Space Planning 5

trajectory π at time t is denoted as π(t). The cost of the trajectory π
p
b0

induced by p
is c(π p

b0
) = ∑

m
i=1
∫

x∈X cost(x,ui) · bi−1(x)dx. And the goal of the NOMDP solver is to
find a control sequence p that generates a trajectory π

p
b0

for which the probability of
being in the goal region at time Tπ is above the threshold: P(π(Tπ) ∈ XG))> Pgoal ,
the probability for being in the free space is above the threshold: Pf ree(π)> Pvalid ,
and which minimizes the cost c(π).

The objective function of POMDPs uses the commonly applied definition (Sec. 2).
The reward function R(s,a) for any pair of state s and action a is a summation
of collision cost and reward for being in the goal. The reason for this difference
in objective function is that solving a POMDP with probability constraints is still a
relatively open problem.

3 Distance Functions for Belief-Space Planning
Computing the optimal POMDP policy is computationally intractable [17]. In the

past several years, however, methods, which can compute a good approximation to
the optimal policy fast, have been proposed. Most of them rely on sampling, and de-
pend on distance functions. They can be classified into several distinct approaches.

Point-based techniques [13, 21, 25, 26] use sampling to construct a small but
representative set of beliefs, and find an approximately optimal policy by iteratively
computing Bellman backups [21] on the sampled beliefs. The key is the sampling
strategy, and some of the successful methods use distance functions to guide sam-
pling. For example, PBVI [21] only keeps a newly sampled belief whenever the L1

distance between the new and existing belief is larger than a certain threshold, while
GCS [11] uses EMD, and an alternative [8] uses KL divergence to perform a similar re-
jection sampling. A fast offline point-based solver [13] uses L1 distance for pruning.
Point-based methods can handle any type of distributions but they have difficulties
in solving problems in large continuous action spaces.

This work evaluates four distance functions for belief-space planning. Two of
them, Kullback-Leibler (KL) and L1 divergence, are commonly used in belief-space
planning. In general, these two functions do not consider the underlying state-space
distance when computing distance between beliefs. This characteristic limits the ef-
fectiveness of these two distance functions to guide sampling and pruning in the be-
lief space. To alleviate these problems, two alternatives are proposed here, Wasser-
stein (also known as Earth Mover’s Distance (EMD)) and Hausdorff distance. Both
of these functions compute distance based on the underlying state space distance.
They have not been widely used in belief-space planning, but they are widely used
in computer vision and optimal transport, which means efficient implementations
for these distance computations abound. For the following, the beliefs are defined
as distributions over a common state space, denoted as X.

A. Wasserstein Distance / EMD: Intuitively, Wasserstein distance or EMD computes
the distance between two distributions as the amount of work to move the probability
mass of one distribution to another. More formally, EMD is defined as:
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DW (b,b′) = inf
f

{∫
x∈X

∫
x′∈X

dX(x,x′) f (x,x′)∂x∂x′
∣∣∣∣

b =
∫

x′
f (x,x′)dx′ , b′(x′) =

∫
x

f (x,x′)dx
}

(3)

where dX is the distance in the state space X and f is a joint density function.
EMD carries the Lipschitz continuity of a cost function in the state space to

Lipschitz continuity of expected cost in the belief space. Formally, let dX be the
distance function on a separable state space X and cost(x,u) be the cost of ap-
plying control u ∈ U at state x ∈ X for the duration of one unit time. Let be-
liefs b and b′ be distributions over X and let the cost function w.r.t. a belief b be
cost(b,u) =

∫
x∈X cost(x,u)b(x)dx.

Theorem: For any control input u ∈ U, if the cost function satisfies Lipschitz con-
tinuity in the state space, i.e., |cost(x,u)− cost(x′,u)| ≤C ·dX(x,x′) for any x ∈ X,
then the cost function in the belief space with EMD metric is also Lipschitz contin-
uous: |cost(b,u)− cost(b′,u)| ≤C ·DW (b,b′).
Proof: The proof is based on the well-known Kantorovich duality of the Wasserstein
distance[5]. The Kantorovich distance is defined as

DK(b,b′) = sup
g∈Lip1

(∫
x∈X

g(x)b(x)dx−
∫

x∈X
g(x)b(x)dx

)
where Lip1 is the set of all 1-Lipschitz functions over X. Now, by definition,

∣∣cost(b,u)− cost(b′,u)
∣∣= ∣∣∣∣∫x∈X

cost(x,u)b(x)dx −
∫

x∈X
cost(x,u)b′(x)dx

∣∣∣∣ (4)

To satisfy the 1-Lipschitz requirement of the Kantorovich distance, we can use the
scaled distance function in the state space X, i.e., d′X = C · dX. It is known that if
we use d′X as the state space distance, then the belief space distance D′W =C ·DW =
C ·DK . The last equality is due to the duality of the Kantorovich and Wasserstein
distance. This means that by using the state space metric d′X, Eq. (4) can be bounded
as: |cost(b,u)− cost(b′,u)| ≤C ·DK(b,b′), and hence |cost(b,u)− cost(b′,u)| ≤C ·
DW (b,b′). ut

From the literature [14], it is known that the POMDP’s value function is Lipschitz
continuous when the metric in the belief space is EMD. The above theorem uses a
similar proving strategy similar to the prior work [14] but generalizes the result to
any cost function that is Lipschitz in the state space.

B. Hausdorff Distance: Hausdorff distance is a popular metric in computer vision.
This function computes distance between two sets based on a max-min operation.
In terms of distance between beliefs, it is possible to define it with respect to the
beliefs’ support set. Slightly abusing the notation of the arguments, this function
can be defined in the belief space as:

DH(b,b′) = max{dH(b,b′),dH(b′,b)}
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dH(b,b′) = max
x∈support(b)

{
min

x′∈support(b′)

{
dX(x,x′)

}}
,

and support(b) = {x ∈ X | b(x)> 0}, while dX(x,x′) is the state space distance.
Hausdorff is simpler to compute than EMD. Nevertheless, since Hausdorff mea-

sures distances between sets, rather than distributions, it ignores the probability val-
ues. This means that if two distributions have exactly the same support, even though
the probabilities are significantly different, the two distributions will be considered
to lie at the same point in the belief space. This problem is exactly the opposite of
the problems faced by L1 and KL-divergence, as described below.

C. KL-Divergence: A commonly used distance function in belief-space planning
is the Kullback-Leiber (KL) divergence. It measures the difference in information
content. More formally, KL divergence is defined as:

DKL(b,b′) =
∫

x∈X
b(x)

(
lnb(x)− lnb′(x)

)
dx (5)

Although in general KL-divergence does not consider the underlying state space
distance, for certain distributions, it does to some extent. For instance, when applied
to Gaussian beliefs, KL-divergence is partially based on the Euclidean distance of
the mean. More completely, the KL-divergence between two multivariate Gaussian
beliefs, denoted as b1 = N (µ1,Σ1) and b2 = N (µ2,Σ2), is

DKL(b1,b2) =
1
2

(
(µ2−µ1)

T
Σ
−1
1 (µ2−µ1)+ tr

(
Σ
−1
2 Σ1

)
+ ln
|Σ2|
|Σ1|
−K

)
(6)

where K is the dimension of the underlying state space.
When applied to general beliefs with continuous state space, one usually starts

by discretizing the state space X into uniform grid cells, and then computes the KL-
divergence using Eq. (5) as if the beliefs are discrete distributions. This computation
means that state-space distance is only considered up to the resolution of the grid
cells, which is very limited.

Note that KL divergence is not symmetric and hence is not a true metric. One
can symmetrize KL simply by adding the reverse distance or by computing distance

to the mean of the two distributions (i.e., DKL(b, b+b′
2 )+DKL(b′, b+b′

2 )
2 ). The later strategy

is called Jensen-Shannon divergence. In the accompanying comparative study, two
implementations are used: (i) the Jensen-Shannon and (ii) an approximation of the
beliefs using Gaussian distributions per Eq. (6).

D. L1Distance: Another commonly used distance function in belief-space planning,
and also the simplest to compute, is L1, which is defined as:

DL1(b,b′) =
∫

x∈X
|b(x)−b′(x)|dx.

Most belief-space planners use L1 distance for discrete distributions, that is X is
discrete and L1 is computed as a summation over X rather than an integration.
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When the state space is continuous and L1 distance is used, then the state space
is discretized at a suitable resolution and the L1 distance computation is applied as
if the beliefs are distributions over the discretized state space. This discretization
means that L1 distance considers the underlying state-space distance only up to the
resolution of the state space discretization, which is often very limited.

4 Algorithms for Comparative Study
To determine which distance function is most suitable for belief space planning

given its complexity, we employ a sampling-based framework.
A. Non-Observable Markov Decision Processes (NOMDPs): The framework fol-
lows tree sampling-based planners. It is based on a BestNear variant of RRT [28? ]
but is adapted to belief space planning. It has been formally shown - at least for the
deterministic case - that this method can improve path quality over time even when
there is no access to a local planner [15? ]. Convergence to optimality requires Lip-
schitz continuity in the state and control spaces.

Algorithm 1: SPARSE BELIEF TREE(B,U,b0,N,Tmax,δn,δs)
1 G = {V →{b0},E→ 0};
2 for N iterations do
3 bselected ← SelectNode (B,V ,δn);
4 bnew← Random Prop (bselect , U, Tmax);
5 if IsNodeLocallyBest (bnew,S,δs) then
6 V ←V ∪{bnew};
7 E← E ∪{bselect → bnew};
8 Prune Dominated Nodes(bnew,V,E,δs);

An outline of the algorithmic framework is shown in Alg. 1. As input, the planner
receives the belief space B, control space U, initial belief b0, and number of itera-
tions N. In addition, Alg. 1 receives a maximum propagation duration Tmax and two
radius parameters δn and δs which are explained below. The selection process (Line
3) is summarized in Alg. 2. A random δ -belief distribution brand is first sampled in
the belief space B and the set of belief distributions Bnear within a distance threshold
δn is computed. If no belief is found within this threshold, then the closest distribu-
tion is returned, similar to the basic RRT approach. If there are beliefs in the set DB,
then the one with the best cost, i.e., in terms of trajectory duration, is returned.

Algorithm 2: SelectNode(B, V , δn)
1 brand ← Sample Belief(B);
2 Bnear ←Near(V,brand ,δn);
3 If Bnear = /0 return Nearest(V,brand);
4 Else return argminb∈Bnearcost(b);

Line 4 of Alg. 1 is the propagation primitive used to add new belief states to the
tree. The subroutine is detailed in Alg. 3. First, a time duration is uniformly sam-
pled up to a maximum time Tmax. The sampled time must be a constant multiple of
the minimum ∆ t in order to satisfy the requirement for piece-wise constant control
inputs, which are sampled after the time duration. Given these control inputs, the
belief distribution can be updated through the transition model.
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Algorithm 3: Random Prop(bprop, U, Tmax)
1 t← Sample(0,Tmax); ϒ ← Sample(U, t);
2 return bnew←

∫ t
0 T(b(t),ϒ (t))bprop dt;

To perform pruning, the set of nodes V in the tree data structure G(V,E) of algo-
rithm Alg. 1 are split into two subsets Vactive and Vinactive. Nodes in Vactive have the
best cost from the start in a neighborhood of radius δs around them. They are those
considered for propagation by the algorithm. Nodes that are dominated by others in
terms of path cost in their local neighborhood, are:
• Pruned if they are leaves or have no children in Vactive.
• Or added to the set Vinactive if they do have children in Vactive but are no longer
considered for propagation.

Algorithm 4 details a simple operation to determine how to prune existing nodes
in the tree. It is called only if the new belief distribution bnew has the best cost in
its local δs neighborhood. Then, the set of existing nodes that are dominated path
cost-wise are set to be inactive. If these nodes are also leaves, they are removed from
the tree, a process, which can propagate up the tree if the parents were also inactive.
This process helps to reduce the size of the stored tree and promotes the selection
of nodes with good path quality.

Algorithm 4: Pruning(bnew,G,δs)
1 Bdominated ← FindDominated(G,bnew,δs);
2 for b ∈ Bdominated do
3 b.set inactive();
4 while IsLeaf (b) and b is inactive do
5 xparent ←Parent(b);
6 E← E \{bparent → b};
7 V ←V \ {b};
8 b← bparent ;

It is apparent that throughout the operation of this sampling-based framework for
belief space planning, there is heavy use of distance calls and a significant depen-
dence on the choice of the distance function.
B. Partially Observable Markov Decision Processes (POMDPs): The framework
follows a point-based approach, similar to Monte Carlo Value Iteration (MCVI)[2],
an extension of SARSOP [13]. The later is considered the fastest offline and general
POMDP solver for problems with continuous state space. The MCVI method is slightly
modified to use the distance function for pruning sampled beliefs. Algorithm 5 de-
tails the algorithm employed for POMDPs, which incorporates SARSOP as its sampling
strategy (Line 6). The function Nearest(b) in Line 7 and 8 returns the belief in the
tree T that is nearest to belief b. The only modification made to MCVI is the addi-
tion of the condition in Line 7, which rejects a newly sampled belief whenever its
nearest neighbor in T is within a given threshold.
C. Algorithmic Details to Improve Speed: The implementation of the distance
functions was optimized to reduce computation time. KL and L1 distances were im-
plemented through the use of binning. The full state space grid is not required, only
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Algorithm 5: ModifiedMCVI(b0)
1 Initialize belief tree T by setting b0 as the root of T ;
2 Initialize policy graph Γ with an empty graph ;
3 Initialize the upper bound V of the value function to be ∞ ;
4 Initialize the lower bound V of the value function to be -∞ ;
5 while |V (b0)−V (b0)|> ε do
6 Sample new belief b ;
7 if distance(b,Nearest(b))< δth then
8 b← Nearest(b) ;

9 else
10 Add b to T ;

11 MCVI Backup(Γ , b) ;
12 V = UpdateUpperBound(b) ;
13 V = UpdateLowerBound(b) ;

the nonzero entry bins. This allows dealing with high-dim. problems, saves space
and reduces computation time. The Hausdorff and EMD functions do not require bin-
ning but become much more efficient using bins. The bin width is chosen so that
several individual bins can be contained within the pruning radius δs when solving
NOMDPs. This discretization introduces an approximation error.

To further speed up the EMD computation, an approximation is employed to oc-
casionally replace the expensive call to the standard method. The motivation stems
from the fact that if two distributions are too far apart, their EMD distance is close
to the distance between their centroids. So, if two distributions overlap according to
their diameters and their discretization, then the standard call to the EMD computa-
tion is performed. Otherwise, the distance between the two centroids is used, which
is a fast operation.

In the following experiments KL-Gaussian represents the approximation of a set
of particles as a Gaussian distribution and performs distances using the closed form
expression from Eq. 6. This distance function does not use binning as the Gaussian
parametrization provides an efficient representation.

5 Experimental Evaluation
5.1 Non-Observable Markov Decision Processes (NOMDPs)
All distances are evaluated in the scenarios shown in Fig. 2. All scenarios produce
non-Gaussian belief distributions due to the nonlinear dynamics. The objective is to
reach a goal state-space region with at least 90% probability. Valid trajectories have
a collision probability of less than 20%.
2D Rigid Body. This introductory example is a 2D rigid body moving among two
narrow corridors. Due to errors in actuation and requirement for collision avoidance,
the robot can only move through the lower corridor. The state space is 2D (x,y) and
the control space is also 2D (v,θ), where v ∈ [0,10] and θ ∈ [−π,π]. The dynamics
are:

ẋ = ṽcos(θ̃) ẏ = ṽsin(θ̃)
where ṽ = v+N (0,1) and θ̃ = θ +N (0,0.3).
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Fig. 2 The considered scenarios - better viewed in color. The 2D rigid body (left) must move
from the left to the right side. The car (left middle) must drive through one of 3 corridors. The
fixed-wing airplane (middle right), must move to the opposite corner while avoiding cylinders.
The manipulator (right) must push the round object into the storage location at the top right.

2nd-order Car. A vehicle with dynamics needs to reach a goal region, while ensur-
ing low collision probability. The state space is 5D (x,y,θ ,v,ω), the control space is
2D (a, ω̇) ∈ ([−1,1], [−2,0.2]), actuation error is (N (0,0.05),N (0,0.002)), and
the dynamics are:

ẋ = vcos(θ)cos(ω) ẏ = vsin(θ)cos(ω)

θ̇ = vsin(ω) v̇ = ã

The environment is more complex than before since there are multiple feasible paths
through each of the 3 corridors.
Fixed-wing airplane. An airplane flying among multiple cylinders. The state space
is 9D (x,y,z,v,α,β ,θ ,ω,τ), the control space is 3D (τdes ∈ [4,8], αdes ∈ [−1.4,1.4],
βdes ∈ [−1,1]) and the dynamics are (from [19]):

ẋ = vcos(ω)cos(θ) ẏ = vcos(ω)sin(θ)) ż = vsin(ω)

v̇ = τ ∗ cos(β )−Cdkv2−gsin(ω) ω̇ = cos(α)(
τ sin(β )

v
+Clkv)−g

cos(ω)

v

θ̇ = v
sin(α)

cos(ω)
(

τ sin(β )
v

+Clkv) τ̇ = τ̃des− τ α̇ = α̃des−α β̇ = β̃des−β

where τ̃des = τdes + N (0,0.03), α̃des = τdes + N (0,0.01), and β̃des = βdes +
N (0,0.01). This problem has a state space that is generally larger than most plan-
ners in belief space can handle computationally. Leveraging sampling-based tech-
niques with proper distance functions makes planning for the airplane possible.
Non-prehensile manipulator. The task is to push an object to the goal. The state
space is 5D (xman,yman,xob j,yob j,θmanip) and the control space is 2D (v,θ), where
v ∈ [0,10] and θ ∈ [−π,π]. The dynamics are:

ẋman = ṽcos(θ̃), ẏman = ṽsin(θ̃)

where ṽ = v+U (−1,1) and θ̃ = θ +U (−0.3,0.3). The object cannot be moved
unless the manipulator moves in the direction of the object and pushes it, which im-
plies that there is contact between the manipulator and the object. Once pushed, the
object moves as if it is attached to the manipulator. Notice that the noise model used
in this setup is a uniform distribution, meaning that the resulting belief distributions
are clearly non-Gaussian.
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Experimental Setup and Results: Each combination of distance function
and algorithm is evaluated in each of the four scenarios described in the previous
subsection. The key criterion is the success rate for finding solutions in the allot-
ted time. The distance thresholds in the algorithms for each metric are selected so
that a similar number of nodes is kept among all alternatives. This allows for a fair
comparison on the effect of a metric to the quality of sample placement. The exper-
iments were executed on Intel(R) Xeon(R) CPU E5-4650 0 @ 2.70GHz machines.
Each experiment is repeated 30 times with different random seeds. The results are
the average of these runs and are presented in Fig. 3-Fig. 6.

Fig. 3 Results for the 2D rigid body - better viewed in color.

Fig. 4 Results for the car. L1 and KL failed to produce solutions within the time constraint.

Fig. 5 Results for the airplane. L1 and KL failed to produce solutions within the time constraint.

Fig. 6 Manipulation results. L1 and KL failed to produce solutions within the time constraint.
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In most scenarios, belief metrics that do consider the underlying state-space dis-
tance, such as EMD, Hausdorff, and KL-Gaussian, perform significantly better than
those that do not. KL and L1 metrics consider the state space distance up to the res-
olution of the state space discretization (as described in Sec. 4). Such consideration
is sufficient when the state space is small (as in Fig. 3). As the size of the state space
increases, this is no longer sufficient. These results corroborated the hypothesis re-
garding the importance of taking into account the underlying state space distance in
computing distance between beliefs.

EMD performs substantially better than the alternatives since it considers both
state space distance and the distributions. The Hausdorff distance performs better
than L1 and KL because it still considers the underlying state-space distance. But
Hausdorff does not consider the distribution, and therefore is outperformed by EMD.
KL-Gaussian performs better than L1 and KL because it considers the mean and
variance of the corresponding Gaussian and in this way considers the underlying
state space distance. Nevertheless, the usefulness of this distance function depends
on how well a Gaussian distribution approximates the actual distribution.

The path costs achieved by the different metrics for successful runs are compa-
rable. Therefore, the success rate is the key criterion for evaluating the effect of the
different metrics to the performance of belief-space planners.

Fig. 7 The normalized costs over time for EMD show the benefit of providing improving solutions.
Each trial’s initial solution is normalized to 1. The cost over time is shown with one st. dev.

Results on Cost Reduction Over Time: Fig. 7 normalizes to one the first
solution generated for each individual run of the algorithm using EMD. Then, all
subsequent improvements to the path cost are relative to the initial cost. The figure
averages all runs. All of the runs show improvement over time. The improvement
is most prominent for the manipulator experiments. This comparison is performed
only for EMD as it provides the best performance. Path cost can also improve over
time using Hausdorff and KL-Gaussian but there are fewer data points to extract
useful conclusions given the reduced success ratio of these metrics.
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5.2 Partially Observable Markov Decision Processes (POMDPs)
The different distance functions are tested on a 2D navigation problem (Fig. 8(a)).

The robot is a point robot, and may start from any position marked by the blue re-
gion. Its task is to reach the goal region (the large circular region on the right) as
fast as possible while avoiding collision with obstacles (the grey polygons) as much
as possible. The robot’s motion is discretized into 5 actions, which is moving a unit
distance in the direction of N, NE, E, SE, and E. Its motion has error, which is rep-
resented as a bounded uniform distribution. The robot can only localize itself up to
a certain accuracy inside the small circular regions on the left of the obstacles. The
problem is modeled as a POMDP with continuous state space, but with discrete action
and observation spaces. The reward function of the POMDP model is a sum of the
goal reward, collision penalty, and moving cost.
Experimental Setup: The original and modified MCVI method (Alg. 5) is eval-
uated separately for the L1, KL, and EMD metrics. To set the required parameters,
such as distance threshold, short preliminary runs with various parameters were ex-
ecuted. The best parameters for each method were retained. Each method was then
executed with the appropriate parameters to generate 15 different sets of policies.
To generate each set of policies, the method is ran until the difference between the
upper and lower bound of the initial belief is less than a given threshold, so that at
the end of the runs, the quality of the policies generated by the different methods are
similar. Throughout each run, the method outputs the intermediate policies at every
time interval and at every time the policy graph reaches a certain size. Each policy is
then evaluated through 1,000 simulation runs. The expected total discounted reward
of a method is computed as the average total discounted reward over all simulation
runs of all the policies generated by the same method within the same interval.

Scenario Results
Fig. 8 Comparative study on a POMDP problem.

Results: The results are presented in Fig. 8(b)–(c). They indicate that EMD sig-
nificantly improves placement of sampled beliefs. Nevertheless, the benefit of us-
ing EMD degrades over time. The reason is that a naive implementation of distance
computation is used, checking the distance between a new sampled belief and all
beliefs that are already in the belief tree. As time increases, the size of the belief tree
increases, and so is the time taken for this computation. This step affects the EMD

computation much more than other metrics because each EMD evaluation is more ex-
pensive. Nevertheless, there has been a lot of work on speeding up EMD computation
[20, 24], which can alleviate this problem.

It would be interesting to see how the POMDP evaluation with EMD performs
on problems with similar scale as the NOMDP scenarios. However, existing POMDP
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solvers cannot solve problems with action spaces and planning horizon as large and
as long as the examples used in the case of NOMDP (i.e., beyond the 2D rigid body
scenario). Nevertheless, as shown in the case of the NOMDP results, the benefit of EMD
becomes more visible as the problem becomes more complex. This is likely to be
true for POMDPs as well. The cost of reward computation in the POMDP test case is
negligible. In more complex motion planning problems, the reward computation of-
ten includes expensive collision checks. In such problems, the ability to solve prob-
lems with smaller number of sampled beliefs, which reduces the number of backup
operations (and hence reward computations), would be more beneficial. Therefore,
the expectation is that EMD would show additional benefits when the POMDP prob-
lems represent more complex planning problems.

6 Discussion and Conclusion
This work demonstrates that using the Wasserstein distance in belief space plan-

ning provides significant improvements over commonly used alternatives, such as
Kullback-Liebler divergence and L1 distance. This is especially apparent when plan-
ning for higher-dimensional systems. By considering an appropriate metric in belief
space, it is possible to gain benefits from recent advances in sampling-based plan-
ning, which allow the computation of trajectories of increasing path quality.

With the burgeoning methods for belief space planning, it is time to take a step
back to understand critical components that make belief space planners perform
well. This paper is a preliminary attempt to provide such an insight.
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