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Abstract— The aging and increasing complexity of infras-
tructures make efficient inspection planning more critical in
ensuring safety. Thanks to sampling-based motion planning,
many inspection planners are fast. However, they often require
huge memory. This is particularly true when the structure
under inspection is large and complex, consisting of many struts
and pillars of various geometry and sizes. Such structures can
be represented efficiently using implicit models, such as neural
Signed Distance Functions (SDFs). However, most primitive
computations used in sampling-based inspection planner have
been designed to work efficiently with explicit environment
models, which in turn requires the planner to use explicit envi-
ronment models or performs frequent transformations between
implicit and explicit environment models during planning.
This paper proposes a set of primitive computations, called
Inspection Planning Primitives with Implicit Models (IPIM),
that enable sampling-based inspection planners to entirely use
neural SDFs representation during planning. Evaluation on
three scenarios, including inspection of a complex real-world
structure with over 92M triangular mesh faces, indicates that
even a rudimentary sampling-based planner with IPIM can
generate inspection trajectories of similar quality to those
generated by the state-of-the-art planner, while using up to
70x less memory than the state-of-the-art inspection planner.

I. INTRODUCTION

Regular and frequent inspection of infrastructures is criti-
cal to ensure safety, while efficient inspection is important to
minimize disruption. Autonomous robots have great poten-
tial to perform such regular, frequent, and fast inspections.
However, inspection planning methods that enable robots
to perform autonomous inspection still face difficulties to
inspect large and complex structures, such as a distillation
plant illustrated in Fig. 1, due to large memory requirements.
This paper aims to alleviate such a difficulty.

Inspection Planning describes the process of finding a
robot’s trajectory, such that upon following the trajectory,
the robot perceives all points on the surfaces of the struc-
ture being inspected without any collision. Among non-
myopic inspection planning methods, sampling-based inspec-
tion planning algorithms are widely used.

In sampling-based inspection planning (e.g., [1], [2], [3]),
the planner samples a representative set of valid configu-
rations, and for each of these configurations, the planner
maintains information about parts of the structures perceived
by the robot if it were to scan the environment from the
particular configuration. This additional information about
the perceived observations implies that the memory re-
quirements of the planner increases proportionally with the
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Fig. 1. A glycol distillation plant at San Jacinto College, on which we
evaluate the performance of IPIM. We name it Plant in Section V-A.

number of valid sampled configurations and complexity of
the environments. Moreover, in general, the number of valid
samples required to generate a good inspection trajectory also
increases substantially with the size and complexity of the
environment being inspected. As a result, inspection planners
often have prohibitively large memory requirements. Recent
implicit models, such as neural Signed Distance Functions
(SDFs) [4], [5], are known for their memory efficiency and
could alleviate the mentioned memory requirement problems.

However, existing sampling-based inspection planners
cannot fully benefit from such an implicit representation be-
cause existing primitives for sampling-based inspection plan-
ning were designed for explicit environment models. These
primitives are: (1) Collision Check to ensure collision-free
inspection trajectory, (2) Observation Simulation to predict
observations (e.g., images, point clouds) perceived from a
sampled configuration, (3) Observation Representation to
store the simulated observation during planning and (4) Total
Coverage Check to calculate the coverage along a potential
inspection trajectory. Many efficient methods for each of
these primitives have been proposed, but they require the
environment to be represented as an explicit model.

In this paper, we propose novel primitive computations,
called Inspection Planning Primitives with Implicit Mod-
els (IPIM), to enable samping-based inspection planning
to leverage the more compact implicit models during the
entire planning process. Specifically, with IPIM, the most
memory-consuming components of inspection planning, i.e.,
explicit global environment models and local observation
representations, can be replaced by memory-efficient neural
SDFs. Although SDFs are not new, primitives that enable
sampling-based inspection planners to directly use neural
SDF representation are novel and non-trivial.

We evaluated IPIM with a simple sampling-based inspec-
tion planner on three scenarios, including the inspection
of a real-world distillation plant dataset with over 92M
mesh shown in Fig. 1. The results indicate that IPIM can
substantially reduce the memory requirement by up to 70X,
compared to the state-of-the-art method.



II. RELATED WORK
A. Sampling-based Inspection Planning

Inspection planning methods can be classified into myopic
and non-myopic. Myopic methods generally rely on sub-
modular characteristics of inspection planning problems.
However, this characteristics is often false for complex clut-
tered environments where many areas are occluded, requiring
elaborate inspection strategies that cannot be generated by
myopic approaches.

The most scalable non-myopic approach is sampling-
based inspection planning. These methods compute globally
feasible / optimal inspection paths via sampling. For instance,
Random Inspection Tree Algorithm (RITA) [1] is one of the
first sampling-based methods that computes asymptotically
optimal solution to inspection planning problems with non-
holonomic motion constraints. To improve RITA’s efficiency,
Rapidly exploring Random Tree of Trees (RRTOT) [2] pro-
poses to utilize inter-branch knowledge such that promising
samples among different branches can be shared. The state-
of-the-art sampling-based method today is Incremental Ran-
dom Inspection-roadmap Search (IRIS) [3], [6], which first
constructs a rapidly-exploring random graph (RRG) [7], then
searches on the RRG for the optimal inspection path. Note,
however, both RRTOT and IRIS require steering functions,
which can be costly to compute, when the inspection is
performed by non-holonomic robots.

All sampling-based inspection planners share the four
primitives of inspection planning, as mentioned in Section I.
Since they use explicit global environment models, they
require huge memory when the structure to be inspected
is large and complex, hindering their applicability in such
inspection scenarios.

B. Neural Implicit Representation

Neural implicit representations encode 3D spatial informa-
tion [5] compactly in the weights of a deep neural network.
Radiance Field [8], [9], [10] and Signed Distance Function
(SDF) [4], [5], [11] are the most widely used neural implicit
representations. We focus on SDF for its high training and
inference efficiency.

SDF is a continuous function that maps any given spatial
point to a signed distance between the point and the boundary
of an object, where the sign encodes whether the point is
inside (negative) or outside (positive) of the object, and an
SDF value of 0 implies the point is a surface point —that is,
the point lies on the boundary of the object [4]. Finding the
direct R* — R SDF mapping is challenging as deep neural
nets are biased towards learning low-frequency functions
[12], which is not the case in real-world 3D environments
where high-frequency variations in structures are common.
Various methods [13], [14], [15] have been proposed to
efficiently encode raw coordinate inputs. These encodings
enable training the SDF mapping to become nearly real-
time, enabling their use in real-time robotics applications
like visual SLAM [5], [11], [16], navigation [17], [18] and
motion planning [19].

Despite its wide applicability in robotics, SDF is rarely
used in inspection planning even though it can significantly
reduce memory requirements because, inspection planning
primitives have been designed for explicit environment mod-
els. Removing this difficulty, we propose IPIM, a set of
primitives for inspection planning with neural SDFs.

III. PROBLEM DEFINITION

We follow a typical inspection planning problem formu-
lation, e.g., [1]. Let Cree, U, € be the collision-free part of
the robot’s configuration space, the control space and the
explicit model of the environment, respectively. Denote the
set of surface points to be inspected in £ as Sg. Our goal
is to find a collision-free trajectory v* : {0,1,--- T} —
C'free induced by the time-parameterized control function 7 :
{0,1,---,T} — U, such that upon following the trajectory,
the robot starting from ~(0) can perceive each point in
S from at least one configuration «(t),t € {0,1,---,T},
and the workspace length of the trajectory is minimized.
We assume the robot’s geometry and kinematics are known
a priori. It is equipped with visibility sensors with depth
information, such as depth cameras or LiDARs. The robot
performs discrete sensing, taken only at the end of each
control command 7(t),¢ € [0, T].

IV. IMPLICIT SAMPLING-BASED INSPECTION PLANNING
A. Overview

IPIM proposes efficient primitives for inspection planning
when implicit neural SDF representation is used to represent
the environment and observation. Neural SDF is recognized
for its rapid training and compactness, making it well-suited
for planning tasks that demand memory efficiency.

With IPIM, the known explicit environment model £ is
first converted into an implicit SDF model f¢ represented by
a neural network (Section IV-B). Without loss of generality,
we suppose IPIM is used with a sampling-based inspection
planner that builds a tree T = {N,E}, where N and E are
the set of nodes and edges in the tree. Under IPIM, each
node n € N represents a 4-tuple (q, Bp_, fp,,cov(n)). The
four elements in the tuple reflect how IPIM converts the four
primitives of the planner to their implicit forms, namely:

1) Collision Check: Let q € Cfpee be the sampled
robot’s configuration at node n. Suppose the parent
of n is n’ € N and the configuration at n’ is q’ €
C'free, then the collision check against trajectory q’q
is performed with the implicit model f¢.

2) Observation Simulation: Let P,, be the raw obser-
vation perceived by the robot’s configuration at node
n (e.g., a depth image). This observation is simulated
using the SDF function fe. We also derive a point
cloud from P,,. For brevity, we use the term bounding
box of Py to refer to the bounding box of the point
cloud corresponding to the observation P,. TPIM
maintains the bounding box of P,, denoted as Bp_ . In
the following sections, we use P without the subscript
n when referring to a general raw observation.
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Illustration of how IPIM is used with an inspection planner to reduce the memory cost. Before planning, the explicit environment £ is converted to

neural SDF fg comprising a feature extractor (FE) and a Multi-Layer Perceptron (MLP). During planning, IPIM converts the four primitive computations
of inspection planning with SDF to the implicit counterparts. Description about the four primitive computations is presented in Section I.

Algorithm 1 TP-IPIM (Explicit Env. £, Planner TP)
1: Initialize: TP.Tree T
2: Initialize: Implicit SDF model f¢
3: while PlanningTime=True do
4: Nyrt, Nehds W = EXPand(T)

> Section IV-B

5: if CollisionFree(n,, 0.4, fe) then > Section IV-C
6: P = SimulateObs(n.;4, fg) > Section IV-D
7: n.q¢.Bp = P.Bp

8: fp = ObsRepresent(P, fc) > Section IV-E
9: Sp = MarchingCube(fp)

10: nepa-fp = fp

11: n.pq.cov = TotalCov(n,,q, Sp) > Section IV-F
12: T.Add(n,cq, Nena)

3) Observation Representation: The notation fp_ de-
notes the tiny-size multi-layer perceptron that encodes
the local SDF representation of the observation P,.
The set of local surface points, denoted as Sp_, can
then be generated from Bp_ and fp_ with marching
cube [20].

Total Coverage Check: The notation cov(n) refers to
the accumulated coverage in the path from the root
of T until node n of T. This coverage is calculated
incrementally and implicitly as T being expanded.

4)

The details of each of the primitives above are presented in
Section IV-C—Section IV-F, respectively.

Algorithm 1 presents an overview of how a sampling-
based inspection planner with tree representation can use
IPIM and neural SDF model throughout its entire planning
process. Fig. 2 provides a summary of the four primitives
in IPIM and how they are applied in a tree-based sampling-
based inspection planner.

B. SDF Neural Network Structure

IPIM replaces the memory-consuming explicit environ-
ment model £ with an implicit neural SDF, denoted as
fe, that approximates the ground truth SDF. To this end,
it parameterizes the neural SDF function with additional
parameters that are the weights of the neural network.
Specifically:

fe(x;61,03) = MLP (FE(x; 6,); 2) (1)

where x € R? is a 3D point, and ; € R% 0, €
R% are the weights of the neural network, where dy,ds

are hyperparameters determining the size of the weight.
MLP stands for Multi-Layer Perceptron. Whilst the nota-
tion FE(x; 01) = [HashGrid(x; 61)” OneBlob(x)T]T refers
to a Feature Extractor that concatenates features obtained
from HashGrid — multiresolution hash encoding [15], and
OneBlob encoders [14]. The former learns spatial features
from x and the latter describes x with multiple frequency
bands, suitable for structures with complex geometry.

HashGrid disentangles the task of mapping into two sub-
tasks: (1) feature extraction and (2) mapping from extracted
features to SDF values. Task (1) requires many parameters as
it contains high-level spatial information of the environment,
while task (2) usually requires only MLPs of tiny sizes. Since
& is a priori known, we can pre-train FE (67) to complete
task (1). During planning, all task (1) parameters are shared
among all nodes in the tree, while the local observations
in each node is fully controlled by tiny-sized parameters in
downstream MLPs and parameterized by 65.

When training the network on the entire environment &,
we apply the mean squared loss function

1

X
where X,Y are collections of 3D coordinates and corre-
sponding SDF values obtained from the explicit representa-
tion of £, respectively. |-| and ||-||2 are the cardinality and the
lo norm. We apply the truncated SDF (TSDF) [4] strategy,
which ensures the magnitude of SDF value cannot be greater
than a given threshold, to better approximate the depth values
and reduce variance in points far from any surface. TSDF is
applied to the ground truth SDF and to the learnt SDFs.

C. Collision Check with Implicit SDF

To check whether the robot at configuration q is in
collision or not, we first represent the robot’s geometry with a
sufficiently dense set of control points [21] that encapsulates
the robot, denoted by C(q). For any p € C(q) and threshold
value £ > 0, if fe(p) > &, we know p is £ units away from
its closest surface. When all points in C(q) have SDF values
greater than &, we can infer the robot at configuration q is
collision free.

Le(X,Y;01,05) = — [|fs(X;61,05) — Y| (2

D. Generating Simulated Observation from SDF

IPIM provides a function to simulate observations from
neural SDF environment model. Specifically, IPIM simulates
observation depth image P from the neural SDF f¢, instead



of the explicit environment £. To this end, IPIM marches
rays emitted from a simulated depth sensor. For each ray,
IPIM finds the first surface point of £ hit by the ray, i.e.,
the first point p along the ray that satisfies f¢(p) = 0. The
simulated depth provided by the ray is then the distance the
ray travels to reach p.

E. Representing Simulated Observation

Instead of storing the simulated observation explicitly,
IPIM represents them as local SDF, denoted as fp and
encoded as a tiny-sized local MLP that reuses the feature
extractor FE of fe¢.

A key functionality of the simulated observation is to
estimate the coverage of different paths. Suppose P, is
the depth image perceived from a robot’s configuration at
node n of the plannng tree T. We define coverage of n as
#Covered(Py,)/|Sg|, where #Covered(P,,) and |Sg| are the
number of surface points of £ visible in P, and the total
surface points, respectively. The set of surface points of £
visible in P,, can be obtained by performing marching cube
[20] on the SDF model fp_. Modern libraries like Pytorch3D
[22] support GPU-accelerated marching cube. These libraries
enable marching cube operation to run fast, especially when
£ has a high resolution. Moreover, by using marching cube,
the explicit P or equivalently the corresponding point cloud,
can be discarded, and only the weights of fp_, which is
tiny, need to be maintained, thereby reducing memory usage.
Since coverage is computed for each node of T, the total
memory IPIM saves is substantial.

Now the question is how to efficiently learn an accurate
fp from P, so that the implicit fp can be used faithfully
just like the explicit P. Such an accurate fp also minimizes
labeling unvisited areas as visited or vice versa, helping to
compute an accurate estimate of paths’ coverage. Training fp
from scratch generally requires more memory or time than
storing P explicitly. However, since £ is static and known a
priori, any P must correspond to a certain part of £. Since
FE of f¢ contains the spatial information of the entire &,
it also contains the area corresponding to any P. Therefore,
FE of fe can be reused when encoding P. The local SDF
of P is hence fp = MLP (FE(x;01);0p), where the FE of
fe is reused, and the parameters of @p are re-trained and
maintained.

Before defining the loss function used to train fp, let us
first define our accuracy goals: (1) surface points visible from
P should have SDF values close to 0, and (2) invisible (oc-
cluded / uncovered) surface points should have large TSDF
magnitudes so that their corresponding vertices disappear in
the mesh obtained from fp. The first objective can be solved
by minimizing L¢, while (2) cannot, as the shared FE has
dominantly more parameters than that of MLP. If only L¢ is
minimized, FE predicts accurate SDF values on areas not
visible in P, which is undesirable. Instead, we want the
SDF of areas not visible in local observation P to be large
in magnitude, so that the marching cube does not generate
surface points in areas not visible in P.

Algorithm 2 ObsRepresent (Observation P, TSDF f¢)
1: Initialize: New multi-layer perceptron MLP

Initialize: TSDF model fp = MLP o f¢.FE

Initialize: Freeze 0, weight of fc.FE

Initialize: Reset Op, weight of MLP

Initialize: Ray origin, directions O, D from P

Initialize: Target depth T from P, truncation tr = fe¢.tr

Sample T;s in [T — tr, T

Sample T, in [T, P.MaxDepth]

{Xm'sv Xocc} =0+ {Tvis; Tocc} oD

Yyis =T —Tyis 5 Yoo =min {T - Tocm —t’f‘}

: while Iter < MaxIter do

GP — 91:) - O5V91::Llocal

13: Return fp

R A A

_ =
N e

Algorithm 3 TotalCov (Node N, Surface points Sp,,)
1: Initialize: Predecessor Nodes 1,2,--- , N
2: Initialize: Bounding boxes {Bp,}Y ;, Tolerance ¢ > 0
3: foriin {1,2,--- ,N —1} do
4 if Bpi N BPN # & then
5: for p € Sp, do
6
7
8

if p € Bp, and |fp,(p)| < ¢ then
Remove p from Sp,

: Return |Sp, |/|Se| + (N — 1).cov

Let us define a ray as r = o + ¢ - d, where o,d are the
ray origin and direction, respectively, and ¢ is the distance
traveled along d. From the depth information in P, we know
when the ray hits a surface, say at ¢t = %(, all subsequent
points on the ray, i.e., at t = ty + d where § > 0, are
occluded. For learning the neural SDF, the occluded points
have target TSDF values min {¢r,0} where ¢r > 0 is the
already set truncation value for TSDF. These occluded points
will also be fed into the network to weaken the dominance
of FE, letting MLP predict truncation values for occlusions.
The loss function for learning local SDF is then:

Elocal (Xvi57 Xocca Yvi57 Yocc; 91; BP)
= )\vis : L:E (Xm'sa Yvis; 013 OP)

@ ||f€(Xocc§ 01, OP) - Yocc“§ €)]
where As are hyperparameters, vis, occ stand for visible
and occluded. Note the weight of FE, 61, is frozen during
learning MLP weights Op. The pseudocode for learning fp
is shown in Algorithm 2. This strategy enables inspection
planners to be much more efficient in representing locally
observed environments.

+ >\occ :

F. Total Coverage Checking

Each path from the root to a leaf node in the planning tree
T forms an inspection trajectory. The total coverage along
trajectories can be used as termination criterion and planning
heuristic. However, unlike explicit representations where
the total coverage can be easily retrieved from set unions,
trivially concatenating SDFs in nodes along trajectories do
not result in another SDF that describes the total coverage.



To perform Total Coverage Check along a trajectory,
IPIM requires the set of local surface points of the nodes in
the trajectory. The local surface point Sp, of node n can be
obtained by performing marching cube on the learnt local
SDF fp_, assuming the bounding box of the observation
Bp,, is defined. To ensure Sp, is a subset of global surface
points, so that no extra surface points are generated, the
bounding box Bp,_, must be snapped to the grid used by the
marching cube on fg. In practice, one only needs to snap
the two extreme points of Bp_ to the grid. Note that using
the above method, the set of local surface points of a node
is only needed the first time coverage is computed for the
particular node, and can be discarded immediately after, to
keep the memory consumption low.

Sup}zlose a trajectory has N — 1 nodes with local SDFs
{ fpi}i:;1 and total coverage C'. When a new node N is
added to the trajectory, we first identify the number K
of newly visited surface points at the new node N —
that is, surface points that do not intersect with observa-
tions in the predecessor nodes {1,2,---,N — 1}. Then,
the total coverage for the new trajectory, consisting of
{node-1, - - - ,node-(N — 1),node-N}, can be calculated in-
crementally as C' + K/|Sg|.

To compute the above coverage, we need an efficient
method to check if a surface point in the newly added node,
p € Sp,. intersects with an observation in the predeces-
sor nodes {Pz}f\;l To this end, first, Bp, is checked
against {Bpi}f\;l. If Bp, and Bp, do not intersect, then
Spy NSp, = & and hence p ¢ Sp,. If the bounding box
Bp, and Bp, intersects, we need to check if p € Sp,.
This check can be done efficiently by first checking if
p is in Bp,. If it is, then p € Sp, if |fp,(P)] < €
where ¢ > 0 is a threshold to check if the SDF is close
to 0. The number K of newly visited points is then the
cardinality of the set {p € Sp,| Vi € [I,N — 1],p ¢
Sp,}, and the total coverage for the trajectory consisting
of {node-1,--- ,node-(N — 1),node-N} is C + K/|S¢|.
Algorithm 3 describes the method to fuse local SDFs to
calculate the total coverage.

By converting all primitives of inspection planning to work
directly with implicit environment models, IPIM enables the
development of novel memory-efficient inspection planning.

V. EXPERIMENTS
A. Experiment Settings

We evaluate our proposed method on three scenarios with
screenshots of the mesh shown in Fig. 1 and Fig. 3:

1) Bridge has 7.4K mesh vertices and 9.4K mesh faces,
taken from [3], [6]. We have reduced the scale of this
environment by a factor of ten, so it has size 6m x
2m x 4m.

2) Plant refers to a glycol distillation plant at the San
Jacinto College. The mesh model of the plant is
obtained by processing raw scans collected from a
Leica RTC360 Laser Scanner and a BLK ARC Lidar
scanner. This scenario consists of 52.5M vertices and
92M faces, and is sized 44m x 19m x 15m.

Fig. 3. From left to right: Bridge taken from [3], and Plant-s taken as a
subset of Plant shown in Fig. 1.

3) Plant-s is a subset of Plant with size 15m x 10m X
10m, consisting of 10.4M vertices and 20.9M faces.

The robot used for inspection is a drone with 10cm
side length. Its C-space has 5 dimensions, consisting of the
position of the drone’s center of mass, yaw, and pitch angle.
The drone is equipped with a visibility sensor with limited
range (1m for the Bridge scenario and 3m for the other
scenarios) and 90° horizontal and vertical field-of-view.

IPIM works as a framework to be combined with an
inspection planner. To demonstrate its performance, we
propose a simple tree-based planner TP to be used with
IPIM. TP itself is implemented on the CPU, while IPIM
is accelerated by the GPU. The pseudocode of TP with
IPIM is shown in Algorithm 1 with modification in the
tree expansion, and additional prunings. When expanding
the planning tree, inspired by [23], we bias TP towards
nodes with higher coverage, so that Pr(n being sampled) o
1/Nq(n) + on.cov with constant o > 0, Ng(n) being the
number of nodes whose configuration to n is less than d
units. The expansion is performed single-threaded, such that
only one new node is expanded every time. TP also prunes
the tree every certain iterations (2000 in all our experiments).
The pruning maintains only the branch with the highest
coverage. To emphasise, the main reason of performing
pruning is for TP to achieve a higher coverage. Without
pruning, TP can be viewed as a RITA [1] inspection planner
that fails to achieve a decent coverage in large complex
scenarios, as suggested by [23] and tested by the authors.
Note that TP is a simple example planner used to test the
performance of IPIM and the pruning step will certainly not
harm the per-node memory reduction of IPIM as TP and
IPIM are completely separate and independent.

We compare the performance of four methods: TP with
IPIM (TP-IPIM), TP without IPIM (TP), IRIS [3] — a
state-of-the-art sampling-based inspection planner, and IRIS-
M. IRIS-M is our modification IRIS where the visibility set
computation is parallelized by Open3D [24] with 12 CPU
threads. Without this modification, IRIS failed in Plant-s
and Plant. We use the same library and the same number of
CPU threads for TP. Note that although TP and TP-IPIM
are tree-based while IRIS and IRIS-M are graph-based, they
are still comparable as they all share the same four primitive
computations of inspection planning.

TP-IPIM requires an implicit model of the environment,
fe. To train fe, we uniformly sample points in both near-
surface and far-surface areas. Afterwards, TSDF values of



TABLE I
COVERAGE, COST, AND MEMORY W.R.T. ENVIRONMENTS AND ALGORITHMS

Environment Bridge (30 minutes) Plant-s (2 hours) Plant (2 hours)

Planner IRIS IRIS-M TP TP-IPIM || IRIS | IRIS-M TP TP-IPIM || IRIS | IRIS-M TP TP-IPIM
Mem Base (MB) [|0.8 +0.0/0.8£+£0.0| 0.5 + 0.0 |3.6 +0.0(|N.A.[7954+10|930+ 17| 32 + 0 [|N.A.|2178 £15[2179+26| 31 + 0
Mem Total Limit Each of IRIS, IRIS-M, and TP: 96 GB; TP-IPIM: 1 GB

# Out of Mem 0/10 0/10 0/10 0/10 N.A. 6/10 0/10 0/10 N.A. 10/10 0/10 0/10
Coverage (%) 55+ 1 55+ 1 88 + 0 544+3 |[INA.| 56t3 | 84 +1 54+ 3 [|N.A.| 21+£2 19+2 24 +£2
Cost 348 + 6 | 348 + 6 | 1965 £ 65629 =29 || N.A. | 159 + 2 |361 17221 =13 || N.A. | 286 + 14 | 188 + 13 | 328 + 20

those points can be evaluated from the explicit environment
&. The loss function used to encode £, Lg, can then be
optimized and fg¢ is obtained. IRIS and IRIS-M require
manually setting the number of nodes in their RRGs where
they search for the optimal inspection path. To set this
parameter, we performed preliminary runs to find a suitable
parameter for each scenario, which turned out to be 1000
nodes. To set other hyperparameters in IRIS and IRIS-M,
we follow [3], [6].

We use 2.8GHz CPUs and a single RTX3090 GPU for
all experiments. TP-IPIM and TP are implemented us-
ing Python for easier deep learning implementation using
PyTorch [25]. We use Pytorch3D [22] to accelerate the
marching cube algorithm of TP-IPIM with GPU. IRIS and
IRIS-M are implemented in C++, following the official
implementation. IRIS uses spherical sectors as their visi-
bility sets. We change them to pyramids to align with the
common assumption, so that all four methods to compare
share the same geometry of visibility set. The code of both
IRIS and IRIS-M are taken and modified from the official
implementation of [3], [6]. C++ is more memory efficient
than Python, giving IRIS and IRIS-M the upper hand.

Details related to training the environment model f¢ and
local SDFs fp are as follows. f¢ takes ~ 5 minutes to
train with a total of 426K parameters for Bridge and 6.9M
parameters for Plant-s and Plant. During planning, fp are
3-layer MLPs with 505 parameters for Bridge and 761
parameters for Plant-s and Plant. Each fp is trained for 20
iterations in Bridge and 100 iterations in Plant-s and Plant,
with learning rate 3e-3, using AdamW [26] optimiser. TP-
IPIM plans approximately 8-9 nodes per second in the most
complex Plant scenario, due to the small size of fp.

B. Performance Comparison

In this section, we compare the performance among TP-
IPIM, TP, IRIS and IRIS-M, in terms of coverage, cost, and
baseline memory and total memory consumption. Coverage
is as defined in Section IV-E. The cost is defined as the
length of the inspection trajectory, and the baseline memory
is counted as the size of the explicit (IRIS, IRIS-M, TP) /
implicit (TP-IPIM) global environment model, plus the size
of all local observation representations in planning nodes. As
discussed in Section I, these two components are necessary to
most of the sampling-based inspection planning algorithms,
and contribute most to the total memory consumption. We
emphasize that even if we used GPU in TP-IPIM, the storage
of planning nodes (e.g., MLP weights fp) is moved to CPU
immediately after the GPU calculation is complete.
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Fig. 4. From left to right: planning time v.s. inspection coverage, and

planning time v.s. cost of the inspection path. From up to bottom: scenario
Bridge, scenario Plant-s and scenario Plant.

All planners are run for 10 times in three scenarios. We
set the planning time limit (which doesn’t include the time of
obtaining fg¢ and I/O) to be 30 minutes, 2 hours and 2 hours
for Bridge, Plant-s and Plant, respectively. We set the total
memory limit to be 96 GB for IRIS, IRIS-M, TP and only 1
GB for TP-IPIM, and record the number of out-of-memory
runs. Detailed results are shown in Table. I and Figure. 4.

1) Comparison between TP and TP-IPIM: In Bridge
and Plant-s scenarios, TP plans faster than TP-IPIM, as
TP-IPIM trains local MLP online to represent the local
observation. Though in Plant, TP-IPIM is faster than TP.
With a complex environment, the explicit representation of
local observations is slow even with parallelized computa-
tions using modern libraries. In Plant, which is the largest
scenario, with IPIM, the same planner can be sped-up with
substantially improved memory efficiency.

2) Comparison between TP-IPIM, IRIS and IRIS-M:
We ran IRIS in both scenarios for 24 hours without getting



Fig. 5. Sample trajectories in Plant-s planned by TP-IPIM, with red
covered, black uncovered and blue the inspection path. TP-IPIM plans
within 2 hours (Up) and 3 hours (Bottom), with 55% and 62% coverage.

any results. Therefore, for the rest of the comparison, we
use IRIS-M. In all scenarios, TP-IPIM achieves similar
coverage results as IRIS-M. IRIS-M has asymptotically
optimal guarantees, achieved by searching on an RRG. De-
spite its only 2 GB baseline memory cost, IRIS-M searches
numerous number of inspection paths, resulting in huge total
memory cost. As shown in Table. I, in Plant-s and Plant,
out of 10 runs, IRIS-M ran out of memory for 6 and 10
runs with 96 GB total memory limit. In instances where
IRIS-M exhausts its memory, we capture and save the best
inspection path IRIS-M generated up to the point before
the process terminated. On the other hand, TP-IPIM did
not fail any of the runs, with only a 1 GB total memory
limit. One might view the comparison unfair because TP-
IPIM does not have any optimality guarantees. However, by
just comparing the baseline memory consumptions, which
always exists regardless of whether a search for optimality is
performed, IPIM also brings in ~ 25X and ~ 70x memory
efficiency in Plant-s and Plant.

Fig. 5 provides a visualization of the coverage of TP-
IPIM for 2 hours and 3 hours planning time. The inspection
path demonstrates that, as time increases, IPIM enables the
planner to navigate through a cluttered area (see bottom
right) to achieve better coverage.

VI. SUMMARY

We present a set of primitive computations, called IPIM,
to allow sampling-based inspection planning to efficiently
use implicit environment models. Evaluation indicates that
IPIM substantially reduces the memory cost in inspection
planning of large, cluttered, and confined environments.
Many avenues are possible for future work. For instance,
can better efficiency be gained with other implicit environ-
ment models? And, how to incorporate uncertainty in the
environment and perception?
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