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Abstract

Motion planning under uncertainty is essential for reliable robot operation. Despite substantial advances over the past
decade, the problem remains difficult for systems with complex dynamics. Most state-of-the-art methods perform search
that relies on a large number of forward simulations. For systems with complex dynamics, this generally require costly
numerical integrations, which significantly slows down the planning process. Linearization-based methods have been
proposed that can alleviate the above problem. However, it is not clear how linearization affects the quality of the
generated motion strategy, and when such simplifications are admissible. To answer these questions, we propose a non-
linearity measure, called Statistical-distance-based Non-linearity Measure (SNM), that can identify where linearization
is beneficial and where it should be avoided. We show that when the problem is framed as the Partially Observable
Markov Decision Process, the value difference between the optimal strategy for the original model and the linearized
model can be upper bounded by a function linear in SNM. Comparisons with an existing measure on various scenarios
indicate that SNM is more suitable in estimating the effectiveness of linearization-based solvers. To test the applicability
of SNM in motion planning, we propose a simple online planner that uses SNM as a heuristic to switch between a
general and a linearization-based solver. Results on a car-like robot with second order dynamics and 4-DOFs and
7-DOFs torque-controlled manipulators indicate that SNM can appropriately decide if and when a linearization-based

solver should be used.
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1 Introduction

An autonomous robot must be able to compute reliable
motion strategies, despite various errors in actuation and
prediction of its effect on the robot and its environment,
and despite various errors in sensors and sensing. Computing
such robust strategies is computationally hard even for a 3-
DOFs point robot (Canny and Reif 1987; Natarajan 1988).
Conceptually, this problem can be solved in a systematic and
principled manner when framed as the Partially Observable
Markov Decision Process (POMDP) (Kaelbling et al.
1998). A POMDP represents the aforementioned errors as
probability distribution functions and estimates the state
of the system as probability distribution functions called
beliefs. It then computes the best motion strategy with
respect to beliefs rather than single states, thereby accounting
for the fact that the actual state is never known due to
the above errors. Although the concept of POMDPs was
proposed in the ’60s (Sondik 1971), only recently that
POMDPs started to become practical for robotics problems
(e.g., (Hoerger et al. 2019; Horowitz and Burdick 2013;
Temizer et al. 2009)). This advancement is achieved by
trading optimality with approximate optimality for speed
and memory. But even then, in general, computing close
to optimal POMDP solutions for systems with complex
dynamics remains difficult.

Several general POMDP solvers —solvers that do not
restrict the type of dynamics and sensing model of the
system, nor the type of distributions used to represent
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uncertainty— can now compute good motion strategies
online with a 1-10Hz update rate for a number of robotic
problems (Kurniawati and Yadav 2016; Silver and Veness
2010; Ye et al. 2017; Seiler et al. 2015). However, their speed
degrades when the robot has complex non-linear dynamics.
To compute a good strategy, today’s POMDP solvers
forward simulate the effect of many sequences of actions
from different beliefs are simulated. For problems whose
dynamics have no closed-form solutions, a simulation run
generally invokes many numerical integrations, and complex
dynamics tend to increase the cost of each numerical
integration, which in turn significantly increases the total
planning cost of these methods. Of course, this cost will
increase even more for problems that require more or longer
simulation runs, such as in problems with long planning
horizons.
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Many linearized-based POMDP solvers have been
proposed (Sun et al. 2015; Agha-mohammadi et al. 2013;
van den Berg et al. 2011, 2012; Prentice and Roy 2010).
They rely on many forward simulations from different beliefs
too, but use a linearized model of the dynamics and sensing
for simulation. Together with linearization, many of these
methods assume that beliefs are Gaussian distributions.
This assumption improves the speed of simulation further,
because the subsequent belief after an action is performed,
and an observation is perceived can be computed in
closed-form. In contrast, the aforementioned general solvers
typically represent beliefs as sets of particles and estimate
subsequent beliefs using particle filters. Particle filters are
particularly expensive when particle trajectories have to be
simulated and each simulation run is costly, as is the case
for motion-planning of systems with complex dynamics. As
a result, the linearization-based planners require less time to
estimate the effect of performing a sequence of actions from
a belief, and therefore can potentially find a good strategy
faster than the general method. However, it is known that
linearization in control and estimation performs well only
when the system’s non-linearity is “weak™ (Li 2012). The
question is, what constitute “weak” non-linearity in motion
planning under uncertainty? Where will it be useful, and
where will it be damaging to use linearization (and Gaussian)
simplifications?

This paper extends our previous work in Hoerger et al.
(2020) towards answering the aforementioned questions.
Our main contribution is a measure of non-linearity for
stochastic systems, called Statistical-distance-based Non-
linearity Measure (SNM), to identify the suitability of
linearization in a given motion planning under uncertainty
problem. SNM is based on the total variation distance
between the original dynamics and sensing models, and
their corresponding linearized models. It is general enough
to be applied to any type of motion and sensing errors,
and any linearization technique, regardless of the type of
approximation of the true beliefs (e.g., with and without
Gaussian simplification). We show that the difference
between the value of the optimal strategy generated if we
plan using the original model and if we plan using the
linearized model, can be upper bounded by a function linear
in SNM. Furthermore, our experimental results indicate that
compared to recent state-of-the-art methods of non-linearity
measures for stochastic systems, SNM is more sensitive
to the effect that obstacles have on the effectiveness of
linearization, which is critical for motion planning.

To further test the applicability of SNM in motion
planning, we develop a simple online planner that uses a
local estimate of SNM to automatically switch between a
general planner (Kurniawati and Yadav 2016) that uses the
original POMDP model and a linearization-based planner,
adapted from Sun et al. (2015), that uses the linearized
model. Experimental results on simulated motion planning
under uncertainty problems, including a car-like robot with
acceleration control, 4-DOFs and 6-DOFs manipulators with
torque control, and a 7-DOFs manipulator in a human-
collaboration task indicate that this simple planner can
appropriately decide if and when linearization should be
used, and therefore computes better strategies faster than
each of the component planner.
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2 Background and Related Work

We provide a brief overview of the class of motion planning
under uncertainty problems considered in this paper and their
POMDP formulation in Section 2.1, followed by a discussion
on related measures of non-linearity in Section 2.2.

2.1 Motion Planning Problems under
Uncertainty

In this paper, we consider motion planning problems, in
which a robot must move from a given initial state to a
state in the goal region while avoiding obstacles. The robot
operates inside deterministic, bounded, and perfectly known
2D or 3D environments populated by static obstacles.

The robot’s transition and observation models are
uncertain and defined as follows. Let S C R™ be the
bounded n-dimensional state space, A C R¢ the bounded
d-dimensional control space and O C R! the bounded I-
dimensional observation space of the robot. The state of
the robot evolves according to a discrete-time non-linear
function, which we model in the general form s;;; =
f(s¢,ar,v) where s; € S is the state of the robot at time ¢,
a; € Ais the control input at time ¢, and vy € R< is a random
transition error. At each time step ¢, the robot perceives
imperfect information regarding its current state according to
a non-linear stochastic function of the form o; = h(s, wy),
where o; € O is the observation at time ¢ and w; € R% is a
random observation error.

This class of motion planning problems under uncertainty
can naturally be formulated as a Partially Observable Markov
Decision Process (POMDP). Formally, a POMDP is a tuple
(S,A,0,T,Z, R,by,~), where S, A and O are the state,
action, and observation spaces of the robot. 7" is a conditional
probability function T'(s, a, s’) = p(s’|s,a) (where s,s" €
S and a € A) that models the uncertainty in the effect
of performing actions, while Z(s’, a,0) = p(o|s’, a) (where
o € O) is a conditional probability function that models the
uncertainty in perceiving observations. R(s,a) is a reward
function, which encodes the planning objective. by is the
initial belief, capturing the uncertainty in the robot’s initial
state and v € (0, 1) is a discount factor.

At each time-step, a POMDP agent is at a state s €
S, takes an action a € A, perceives an observation o € O,
receives a reward based on the reward function R(s, a), and
moves to the next state. Now, due to uncertainty in the results
of action and sensing, the agent never knows its exact state
and therefore, estimates its state as a probability distribution,
called belief. The solution to the POMDP problem is an
optimal policy (denoted as 7*), which is a mapping 7* :
B — A from beliefs (B denotes the set of all beliefs, which is
called the belief space) to actions that maximize the expected
total reward the robot receives, i.e.

V*(bo) =

max (R(b, v [ ol a>v*<7<b,a,o>>do> L)
acA 0€0

where 7(b, a,0) computes the updated belief estimate after
the robot performs action a € A and perceived o € O from
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belief b, and is defined as:
b (s") = 71(b,a,0)(s")
= nZ(s’,a,o)/

ses

T(s,a,s)b(s)ds.  (2)

For the motion planning problems considered in this work,
we define the spaces S, A, and O to be the same as those of
the robotic system (for simplicity, we use the same notation).
The transition 7' represents the dynamics model f, while
Z represents the sensing model h. The reward function
represents the task’ objective, for example, high reward for
goal states and low negative reward for states that cause
the robot to collide with the obstacles. The initial belief by
represents uncertainty on the starting state of the robot.

2.2 Related Work on Non-Linearity Measures

Linearization is a common practice in solving non-
linear control and estimation problems. It is known that
linearization performs well only when the system’s non-
linearity is “weak” (Li 2012). To identify the effectiveness
of linearization in solving non-linear problems, a number of
non-linearity measure have been proposed in the control and
information fusion community.

Many of these measures (Bates and Watts 1980; Beale
1960; Emancipator and Kroll 1993) have been designed for
deterministic systems. For instance, Bates and Watts (1980)
proposed a measure derived from the curvature of the non-
linear function. The work in Beale (1960) and Emancipator
and Kroll (1993) computes a measure based on the distance
between the non-linear function and its nearest linearization.
A brief survey of non-linearity measures for deterministic
systems is available in Li (2012).

Non-linearity measures for stochastic systems have been
proposed. For instance, Li (2012) extends the measures in
Beale (1960) and Emancipator and Kroll (1993) to be based
on the average distance between the non-linear function that
models the motion and sensing of the system, and the set of
all possible linearizations of the function.

Another example is the work in Dunik et al. (2013)
which proposes a measures based on the distance between
distribution over states and its Gaussian approximation,
called Measure of Non-Gaussianity (MoNG), rather than
based on the non-linear function itself. Assuming a
passive stochastic system, this measures computes the
negentropy between a transformed belief and its Gaussian
approximation. The results indicate that this measure is
more suitable to measure the non-linearity of stochastic
systems, as it takes into account the effect that non-linear
transformations have on the shape of the transformed beliefs.
This advancement is encouraging, and we will use MoNG
as a comparator of SNM. However, for this purpose, MoNG
must be modified since we consider non-passive problems
in work. The exact modifications we made can be found in
Section 5.2.

Despite the various non-linearity measures that have
been proposed, most are not designed to take the effect
of obstacles to the non-linearity of the system into
account. Except for MoNG, all aforementioned non-linearity
measures will have difficulties in reflecting these effects,
even when they are embedded in the motion and sensing
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models. For instance, curvature-based measures requires the
non-linear function to be twice continuously differentiable,
but the presence of obstacles is very likely to break the
differentiability of the motion model. Furthermore, the effect
of obstacles is likely to violate the additive Gaussian error,
required for instance by Li (2012). Although MoNG can
potentially take the effect of obstacles into account, it is
not designed to. In the presence of obstacles, beliefs have
support only in the valid region of the state space, and
therefore computing the difference between beliefs and their
Gaussian approximations is likely to underestimate the effect
of obstacles.

SNM is designed to address these issues. Instead of
building upon existing non-linearity measures, SNM adopts
approaches commonly used for sensitivity analysis (Mastin
and Jaillet 2012; Miiller 1997) of Markov Decision Processes
(MDP) —a special class of POMDP where the observation
model is perfect, and therefore the system is fully observable.
These approaches use statistical distance measures between
the original transition dynamics and their perturbed versions.
Linearized dynamics can be viewed as a special case
of perturbed dynamics, and hence this statistical distance
measure can be applied as a non-linearity measure, too.
We do need to extend these analyses, as they are generally
defined for discrete state space and are defined with respect
to only the transition models (MDP assumes the state of the
system is fully observable). Nevertheless, such extensions
are feasible and the generality of this measure could help to
identify the effectiveness of linearization in motion planning
under uncertainty problems.

3 Statistical-Distance-Based Non-Linearity
Measure (SNM)

Intuitively, our proposed measure SNM is based on the total
variation distance between the effect of performing an action
and perceiving an observation under the true dynamics and
sensing model, and the effect under the linearized dynamic
and sensing model. The total variation distance Dry
between two probability measures p and v over a measurable
space  is defined as Dpv (11, V) = supgeq |(E) — v(E)|.
An equivalent definition of Dpy which we use in
our analysis is Dpy(u,v) = %supmgl |[ fdu— [ fdv|
(Gibbs and Su 2002). Formally, SNM is defined as:

Definition 1. Let P=(S,A0,T,Z, R,by,~)
be the POMDP model of the system and P=
(S,A,0,T,Z R, by,y) be a linearization of P, where
T is a linearization of the transition function T and Z
is a linearization of the observation function Z of P,
while all other components of P and P are the same.
Then, the SNM (denoted as V) between P and P is

(P, P) = Uy (P, P) + Uy (P, P), where

\I/T(Rﬁ): sup DTV(T(S,a,s’),f(s,a,s’)), 3)
sES,acA

~

U, (P,P)= sup DTV(Z(S’,a,o),2(3’,(1,0)). %)

s’€S,acA

Note that SNM can be applied as both a global and a
local measure. In the latter case, the supremum over the
state s can be restricted to a subset of S, rather than the
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entire state space. Furthermore, SNM is general enough
for any approximation to the true dynamics and sensing
model, which means that it can be applied to any type of
linearization and belief approximation techniques, including
those that assume and those that do not assume Gaussian
belief simplifications. R

We want to use the measure ¥(P,P) to bound the
difference between the expected total reward received if the
system were to run the optimal policy of the true model P
and if it were to run the optimal policy of the linearized
model P. Note that since our interest is in the actual reward
received, the values of these policies are evaluated with
respect to the original model P (we assume P is a faithful
model of the system). More precisely, we want to show that:

Theorem 2. [f 7 denotes the optimal policy for P and ™
denotes the optimal policy for P, then for any b € B,

Rmar

W\IJ(R P),

Vs (b) — V- (b) < 4y
where
V. (b) = R(b,7(b)) + 7foeo Z(b,a,0)V,(7(b,a,0))do for
any policy m and 7(b, a,0) is the belief transition function
as defined in eq. (2).

To prove Theorem 2, we first assume, without loss of
generality, that a policy 7 for a belief b is represented by a
conditional plan o € I', where I is the set of all conditional
plans. The plan o can be specified by a pair (a, ), where
a € A is the action of ¢ and v : O — I is an observation
strategy, which maps an observation to a conditional plan
o' eT.

Every o corresponds to an a-function «,, : .S — R which
specifies the expected total discounted reward the robot
receives when executing o starting from s € 5, i.e.

ay(s) = R(s,a)

+'y/ / T(s,a,8)Z(s',a,0)o, ) (s )dods", (5)
s'eS JoeO

where a € A is the action of o and «,,(,) is the a-function
corresponding to conditional plan (o).

For a given belief b, the value of the policy 7 represented
by the conditional plan ¢ is then V(b) = [, _¢ b(s) (s)ds.
Note that eq. (5) is defined with respect to POMDP P.
Analogously, we define the linearized a-function &, with
respect to the linearized POMDP P by replacing the
transition and observation functions in eq. (5) with their
linearized versions.

Now, suppose that for a given belief b,
0* = argsup,er [, o b(s)as(s)ds and or =
argsup,cr o 0(s)a(s)ds. The plans o* and *

represent the policies 7 and 7* that are optimal at b
for POMDP P and P respectively. For any s € .S we
have that «g+(s) > Qs+ (s) — |ag=(s) — ag-(s)| and
Ay (8) = apr(8) — |ap=(s) — Qy+($)|. Therefore

/;ES b(S)aa\* (S)ds Z /SES

- / b(s) [z (s) — @a- ()] ds,
sesS
6)

b(s)ag«(s)ds
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and
/ses b(s)ay+(s)ds > /ses b(s)ay=(s)ds
- / b(s) |aor(s) — ap=(s)| ds.
ses
(N

Since o* is the optimal conditional plan for POMDP P atb,
we also know that

/ses b(s)ag-(s)ds > /365'

From eq. (6), eq. (7) and eq. (8) it immediately follows that

b(s)as~(s)ds. (8)

/ses b(s)az-(s)ds > /seS b(s)ag-(s)ds

2 b suplas(s) ~ ()] ds
seS oel

Va« (b) 2Va-(b)

— 2/ b(s)sup |a,(s) — ax(s)| ds.
ses oel
©)

Before we continue, we first have to show the following
Lemma:

Lemma 3. Let R, = max{|Rnin|, Rmaz}, where
Rpnin = ming o R(s,a) and Ry,qe = max, o, R(s,a). For
any conditional plan o € I" and any s € S, the absolute
difference between the original and linearized a-functions is
upper bounded by

Rim\p(P, P).

(1—=79)?

The proof of Lemma 3 is presented in Appendix A.l.
Using the result of Lemma 3, we can now conclude the
proof for Theorem 2. Substituting the upper bound derived in
Lemma 3 into the right-hand side of eq. (9) and re-arranging
the terms gives us

o (s) — ao(s)| < 2v

Vye(b) — Vae(b) < 4y w(p,B),  (10)

(1—=79)?

which is what we are looking for. [J

4 Approximating SNM

Ultimately, we want to use SNM as a heuristic during online
planning to decide when a linearization-based solver will
likely yield a good policy and when a general solver should
be used. However, computing SNM exactly is challenging,
due to having to find the suprema over the state and action
spaces in eq. (3) and eq. (4). Here, we provide an efficient
approximation algorithm to estimate SNM. We focus on
approximating the transition component W7 of SNM. The
observation component ¥z is approximated similarly.
Let us first rewrite the transition component of ¥ as

U = sup ¥r(s)
ses

= sup sup DTV(T(s,a,s’),f(&a,s')), (11)

se€S acA
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where W (s) is the transition component of SNM, given a
particular state. To approximate U7, we replace S in eq. (11)
by a sampled representation of S, which we denote as S. The
value Ur(s) is then evaluated for each s € S offline, and
the results are saved in a lookup-table. This lookup-table can
then be used during run-time to get a local approximation of
W around the current belief.

To construct S efficiently, we assume the problem is
deterministic and use kinodynamic RRT (Kuffner and
LaValle 2011) to solve the resulting motion planning
problem. RRT constructs a space-filling tree in the state
space, thus, we can use the nodes to form S. Note that
RRT generates states according to a deterministic transition
function only. If required, one could also generate additional
samples according to the actual stochastic transition function
of the robot. However, in our experiments, the state samples
generated by RRT were sufficient.

To approximate the supremum over the action space
in eq. (l1), we discretize the action space, leaving
us with a maximization problem over discrete actions,
denoted as A. Given A, we approximate Wr(s,a) for
each s€ S and a € A by drawing n samples from the
original and linearized transition function and construct a
multidimensional histogram from both sample sets. Suppose
the histogram consists of k bins. The value U (s, a) is then
approximated as

k

1 ~
Ur(s,a) ~ §Z|Pi — il

i=1

12)

where p; = knin and n; is the number of states inside

j= J

bin ¢ sampled ]frlom the original transition function, while
D = % and 7; is the number of states inside bin %
sample(f from the linearized transition function. Note that the
right-hand side of eq. (12) is simply the definition of the total
variation distance between two discrete distributions. Given
a particular state s € S, we maximize eq. (12) with respect
to A, which gives us an approximation of W (s). Repeating
this process for every s € S results in a lookup-table, which
assigns each state s € S an approximated value of ¥ (s).

During planning, we can use the lookup-table and a
sampled representation of a belief b to approximate SNM
at b. Suppose b is the sampled representation of b, e.g.,
a particle set. Then, for each state s & 5, we take the
state Speqr € S’bo that is closest to s, and assign Ur(s) =
U1 (Snear)- The maximum SNM value max,_ ; Wr(s) gives
us an approximation of the transition component of SNM
with respect to the belief b.

The above approximation method assumes that states that
are close together should yield similar values for SNM. At a
first glance, this is a very strong assumption. In the vicinity of
obstacles or constraints, states that are close together could
potentially yield very different SNM values. However, we
will now show that under mild assumptions, pairs of states
that are elements within certain subsets of the state space
indeed yield similar SNM values.

Consider a partitioning of the state space into a finite
number of local-Lipschitz subsets S; that are defined as
follows:

Definition 4. Let S be a metric space with distance
metric Dg. S; is called a local-Lipschitz subset
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of S if for any s1,s9€S;, any s’ €S and any
a€A:|T(s1,a,8) —T(s2,a,s")| < Cp,Dg(s1,s2)

and ‘f(sl,a,s') - f(SQ,a,s’)‘ < Cs Ds(s1,52), where
Cr, > 0and C’ﬁ > 0 are finite local-Lipschitz constants

In other words, \S; are subsets of S in which the original
and linearized transition functions are Lipschitz continuous
with Lipschitz constants C'r; and C'z . With this definition at
hand, we can now show the following lemma:

Lemma 5. Let S be a n — dimensional metric space with
distance metric Dg and assume S is normalized to [0,1]".
Furthermore, let S; be a local-Lipschitz subset of S, then

1
[Ur(s1) — Ur(s2)| < §ﬁDS(S1,S2) {C:m + Cﬁ} ;

for any s1,s2 € S;

The proof for this Lemma is presented in Appendix A.2.
This Lemma indicates that the difference between the SNM
values for two states from the same local-Lipschitz subset
S; depends only on the distance Dg between them, since
Cr, and Cﬁ are constant for each subset S;. Thus, as the
distance between two states converges towards zero, the
SNM value difference converges towards zero as well. This
implies that we can approximate SNM for a sparse, sampled
representation of Sp, and re-use these approximations
online with a small error, without requiring an explicit
representation of the S; subsets.

5 SNM-Planner: An Application of SNM for
Planning

SNM-Planner is an online planner that uses SNM as a
heuristic to decide whether a general, or a linearization-
based POMDP solver should be used to compute the
policy from the current belief. The general solver used is
Adaptive Belief Tree (ABT) (Kurniawati and Yadav 2016),
while the linearization-based method called Modified High
Frequency Replanning (MHFR), which is an adaptation
of HFR (Sun et al. 2015). HFR is designed for chance-
constraint POMDPs, i.e., it explicitly minimizes the collision
probability, while MHFR is a POMDP solver where the
objective is to maximize the expected total reward. An
overview of SNM-Planner is shown in Algorithm 1. During
run-time, at each planning step, SNM-Planner computes a
local approximation of SNM around the current belief b
(line 5). If this value is smaller than a given threshold, SNM-
Planner uses MHFR to compute a policy from the current
belief, whereas ABT is used when the value exceeds the
threshold (lines 7 to 11). The robot then executes an action
according to the computed policy (line 12) and receives
an observation (line 13). Based on the executed action and
perceived observation, we update the belief (line 14). SNM-
Planner represents beliefs as sets of particles and updates
the belief using a SIR particle filter (Arulampalam et al.
2002). Note that MHFR assumes that beliefs are multivariate
Gaussian distributions. Therefore, in case MHFR is used for
the policy computation, we compute the first two moments
(mean and covariance) of the particle set to obtain a
multivariate Gaussian approximation of the current belief.
The process then repeats from the updated belief until the
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robot has entered a terminal state (we assume that we know
when the robot enters a terminal state).

In the following two subsections we provide a brief an
overview of the two component planners ABT and MHFR.

Algorithm 1 SNM-Planner (initial belief by, SNM threshold
11, max. planning time per step t)

1: InitializeABT(P)

2: InitializeMHFR(P)

3: b = by, terminal = False

4. while terminal is False do

5: ¥ = approximateSNM(b)

6: t, =t—1t, >tgis the time the algorithm takes to
approximate SNM

7: if U < p then

8: a = MHFR(b;, t),)

9: else

10: a = ABT(b;, t,)

11: end if

12: terminal = executeAction(a)

13: 0 = get observation

14: b =7(b,a,o0)

15: b=1"¥

16: end while

5.1 Adaptive Belief Tree (ABT)

ABT is a general and anytime online POMDP solver based
on Monte-Carlo-Tree-Search (MCTS). ABT updates (rather
than recomputes) its policy at each planning step. To update
the policy for the current belief, ABT iteratively constructs
and maintains a belief tree, a tree whose nodes are beliefs
and whose edges are pairs of actions and observations. ABT
evaluates sequences of actions by sampling episodes, that
is, sequences of state-—action-—observation-—reward tuples,
starting from the current belief. Details of ABT can be found
in Kurniawati and Yadav (2016).

5.2 Modified High-Frequency Replanning
(MHFR)

The main difference between HFR and MHFR is that
HFR is designed for chance constraint POMDP, i.e., it
explicitly minimizes the collision probability, while MHFR
is a POMDP solver, whose objective is to maximize the
expected total reward. Similar to HFR, MHFR approximates
the current belief by a multivariate Gaussian distribution. To
compute the policy from the current belief, MHFR samples
a set of trajectories from the mean of the current belief to
a goal state using multiple instances of RRTs (Kuffner and
LaValle 2011) in parallel. It then computes the expected
total discounted reward of each trajectory by tracking the
beliefs around the trajectory using a Kalman Filter, assuming
maximum-likelihood observations. The policy then becomes
the first action of the trajectory with the highest expected
total discounted reward. After executing the action and
perceiving an observation, MHFR updates the belief using an
Extended Kalman Filter. The process then repeats from the
updated belief. To increase efficiency, MHFR additionally
adjusts the previous trajectory with the highest expected
total discounted reward to start from the mean of the
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updated belief and adds this trajectory to the set of sampled
trajectories. More details on HFR and precise derivations of
the method are available in Sun et al. (2015).

6 Experiments and Results

The purpose of our experiments is two-fold: To test the
applicability of SNM to motion planning under uncertainty
problems and to test SNM-Planner. For our first objective,
we compare SNM with a modified version of the Measure
of Non-Gaussianity (MoNG) (Dunik et al. 2013). Details
regarding MoNG are provided in Section 6.1. We evaluate
both measures using two simulated robotic systems, a car-
like robot with 2"?-order dynamics and a torque-controlled
4DOFs manipulator, where both robots are subject to
increasing uncertainties and increasing numbers of obstacles
in the operating environment. The selected robotic systems
are commonly used to evaluate linearization-based solvers
(van den Berg et al. 2011; Sun et al. 2015; Prentice and Roy
2009). Furthermore, we test both measures when the robots
are subject to highly non-linear collision dynamics and
different observation models. Details on the robot models are
presented in Section 6.2, whereas the evaluation experiments
are presented in Section 6.3.

To test SNM-Planner we compare it with ABT and
MHFR on four problem scenarios, including a torque-
controlled 7DOFs manipulator operating inside a 3D office
environment, and a 7DOFs velocity controlled manipulator
working collaboratively with a human worker on a factory
control terminal. Additionally, we test how sensitive SNM-
Planner is to the choice of the SNM-threshold. The results
for these experiments are presented in Section 6.4.

All problem environments are modelled within the
OPPT framework (Hoerger et al. 2018). The solvers are
implemented in C++. All simulations were run on an AMD
EPYC 7003 CPU with 8GB of memory. For the parallel
construction of the RRTs in MHFR, we utilize 8 CPU cores
throughout the experiments. All parameters are set based
on preliminary runs over the possible parameter space, the
parameters that generate the best results are then chosen to
generate the experimental results.

6.1 Measure of Non-Gaussianity

The Measure of Non-Gaussianity (MoNG) proposed in
Dunik et al. (2013) is based on the negentropy between the
PDF of a random variable and its Gaussian approximation.
Consider a n-dimensional random variable X distributed
according to PDF p(x). Furthermore, let X be a Gaussian
approximation of X with PDF p(x), such that X ~
N(u,%,;), where p and X, are the first two moments of p(x).
The negentropy between p and p (denoted as J(p, p)) is then
defined as

J(p,p) = H(p) — H(p), (13)

where
HE) = Sin (2ne)" fdet(2.)]),

(14)
Hp) = - [ pla) npla)do

are the differential entropies of p and p respectively.
A (multivariate) Gaussian distribution has the largest
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differential entropy amongst all distributions with equal first
two moments, therefore .J(p, p) is always non-negative. In
practice, since the PDF p(z) is not known exactly in all but
the simplest cases, H (p) has to be approximated.

In Dunik et al. (2013) this measure has originally
been used to assess the non-linearity of passive systems.
Therefore, in order to achieve comparability with SNM, we
need to extend the Non-Gaussian measure to general active
stochastic systems of the form s;11 = f(s¢, at,v). We do
this by evaluating the non-Gaussianity of distribution that
follow from the transition function T'(s,a,s’) given state
s and action a. In particular, for a given s and a, we can
find a Gaussian approximation of T'(s,a,s’) (denoted by
Tc(s,a,s")) by calculating the first two moments of the
distribution that follows from T'(s, a, s").

Using this Gaussian approximation, we define the
Measure of Non-Gaussianity as

MoNG(T, Tg) =

sup [H(TG(s’avs/)) - H(T(Saaas/))] :

s€S,aeA

5)

Similarly, we can compute the Measure of Non-
Gaussianity for the observation function:

MoNG(Z, Z¢) =

sup [H(Zg(s',a,0)) — H(Z(s',a,0))], (16)

s€S,acA
where Z¢ is a Gaussian approximation of Z.

In order to approximate the entropies H(T(s,a,s’)))
and H(Z(s',a,0)), we are using a similar histogram-based
approach as discussed in Section 4. The entropy terms for
the Gaussian approximations can be computed in closed
form, according to the first equation in eq. (14) (Ahmed and
Gokhale 1989).

6.2 Robot Models

6.2.1 4DOFs Manipulator. The 4DOFs manipulator
consists of 4 links connected by 4 torque-controlled revolute
joints. The first joint is connected to a static base. In all
problem scenarios, the manipulator must move from a known
initial state to a state where the end-effector lies inside a goal
region located in the workspace of the robot, while avoiding
collisions with obstacles the environment is populated with.

The state of the manipulator is defined as s = (6, ) € RS,
where 6 is the vector of joint angles, and 0 the vector of
joint velocities. Both joint angles and joint velocities are
subject to linear constraints: The joint angles are constrained
by (—3.14,3.14)rad, whereas the joint velocities are
constrained by (6,2, 2, 2)rad/s in each direction. Each link
of the robot has a mass of 1kg.

The control inputs of the manipulator are the joint torques,
where the maximum joint torques are (20, 20,10,5)Nm/s
in each direction. Since ABT assumes a discrete action
space, we discretize the joint torques for each joint using the
maximum torque in each direction, which leads to 16 actions.

The dynamics of the manipulator is defined using the well-
known Newton-Euler formalism (Spong et al. 2006). For
both manipulators, we assume that the input torque for each
joint is affected by zero-mean additive Gaussian noise. Note
however, even though the error is Gaussian, due to the non-
linearities of the motion dynamics the beliefs will not be
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Gaussian in general. Since the transition dynamics for this
robot are quite complex, we assume that the joint torques
are applied for 0.1s, and we use the ODE physics engine
(Drumwright et al. 2010) for the numerical integration of the
dynamics, where the discretization (i.e. 6t) of the integrator
is set to §t = 0.004s.

The robot is equipped with two sensors: The first sensor
measures the position of the end-effector inside the robot’s
workspace, whereas the second sensor measures the joint
velocities. Consider a function g : R® — R? that maps the
state of the robot to an end-effector position inside the
workspace, then the observation model is defined as

o=1[g(s),0]" +w, (17)

where w; is an error term drawn from a zero-mean
multivariate Gaussian distribution with covariance matrix
Y-

The initial state of the robot is a state where the joint
angles and velocities are zero.

When the robot performs an action where it collides with
an obstacle, it enters a terminal state and receives a penalty of
-500. When it reaches the goal area, it also enters a terminal
state, but receives a reward of 1,000. To encourage the robot
to reach the goal area quickly, it receives a small penalty of
-1 for every other action.

6.2.2 7DOFs Kuka iiwa manipulator. The 7DOFs Kuka
iiwa manipulator is very similar to the 4DOFs manipulator.
However, the robot consists of 7 links connected via 7
revolute joints. We set the POMDP model to be similar
to that of the 4DOFs manipulator, but expand it to
handle 7DOFs. For this robot, the joint velocities are
constrained by (3.92,2.91,2.53,2.23,2.23,2.23,1.0)rad/s
in each direction and the link masses are (4,4,3,2.7,1.7,
1.8,0.3)kg. Additionally, the torque limits of the joints are
(25,20,10,10,5,5,0.5)Nm/s in each direction. For ABT,
we use the same discretization of the joint torques as in the
4DOFs manipulator case, i.e.we use the maximum torque per
joint in each direction, resulting in 128 actions. Similarly to
the 4DOFs manipulator, we assume that the input torques are
applied for 0.1s, and we use the ODE physics engine with
an integration step size of 0.004s to simulate the transition
dynamics. The observation and reward models are the same
as for the 4DOFs manipulator. The initial joint velocities are
all zero and almost all joint angles are zero too, except for
the second joint, for which the initial joint angle is —1.5rad.
Figure 1(c) shows the Kuka manipulator operating inside an
office scenario.

6.2.3 JacoCollab The third robot we consider is a 7DOFs
Jaco arm mounted on a fixed base, as shown in Figure 1(d).
The robot consists of 7 links connected via revolute joints.
In addition to the arm, the robot is equipped with a RGB-
camera that is mounted on the base. The robot operates
inside a control room in a factory, which consists of a control
terminal located in front of the robot. In addition, a human
worker moves around in front of the terminal, operating it
collaboratively with the robot. In particular, we assume that
the worker is located at x = 1m in front of the robot and
moves along the y-axis of the robot’s base frame. However,
the worker is not used to collaborate with a robot, and their
motion becomes more erratic as their distance to the robot
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Figure 1. Test scenarios for the different robots. The objects colored black and gray are obstacles, while the green sphere is the
goal region. (a) The Maze scenario for the car-like robot. The blue squares represent the beacons, while the orange square at the
bottom left represents the initial state. (b) The 4DOFs manipulator scenario. (c) The KukaOffice scenario. (d) The JacoCollab

scenario.

decreases. The goal of the robot is to reach the terminal with
its end-effector, without colliding with the worker.

Here, the state space is defined as S = © x Y, where ©
is the set of all joint angles, and Y = R is the set of all
positions of the worker along the y-axis of the robot’s base
frame. The robot is controlled via a constant end-effector
velocity of 5cm/s in each of the +z, +y, +2-directions (with
respect to the robot’s base frame), resulting in 6 actions.
At each step, an end-effector velocity command is applied
for 1s and mapped to a joint-velocity command via an
internal controller. While the dynamics of the robot are
deterministic, the motion of the worker is uncertainty. In
particular, we assume that the worker’s y-position evolves
according to Y1 = y¢ + er, with er ~ U [—uy, uy], where
U is a uniform distribution over the interval [—u;,u;]. The
bound u; depends on the closest Euclidean distance d;
between the robot and the worker at time ¢ and is set to u; =
max {0.017 ﬁ
the worker, their motion becomes more uncertain.

While the exact position of the worker is only partially
observed, the robot can estimate it using its onboard camera.
We use a simplified observation model and assume that the
robot receives observations regarding the worker’s y-position
according to o; = y; + ez, where ez ~ U[—0.038,0.038].

The robot receives a reward of 100 for reaching the
control terminal with its end-effector. Upon collision with
the worker, the robot receives a penalty of —100. Both events
lead to a terminal state. Additionally, the robot receives
a penalty of —1 for every step to encourage it to reach
the control terminal quickly. The initial configuration and
y-position of the worker are fully known and set to 6 =
(—0.37,2.11,0.29,2.59,0.54,0.51, 1.62)rad and y = 0.2m
respectively. The discount factor is v = 0.99.

To reach the control terminal, the robot must act
strategically by considering the behavior of the worker.
Getting too close to the worker might lead to collisions, due
to the increased uncertainty in the worker’s motion, while
waiting too long for the worker to move out of the way leads
to an increased time to reach the control terminal.

}. In other words, as the robot approaches

6.2.4 Car-like robot. A non-holonomic car-like robot of
size (0.12 x 0.07 x 0.01) drives on a flat zy-plane inside
a 3D environment populated by obstacles. The robot must
drive from a known start state to a position inside a
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goal region without colliding with any of the obstacles.
The state of the robot at time t is defined as a 4D
vector s; = (w4, ys, 0, v¢) € RY, where 4,9, € [-1,1] is
the position of the center of the robot on the xy-plane,
0; € [—3.14, 3.14]rad the orientation and v; € [—0.2,0.2] is
the linear velocity of the robot. The initial state of the robot
is (—0.7,—0.7,1.57rad, 0) while the goal region is centered
at (0.7,0.7) with radius 0.1. The control input at time ¢, a; =
(aut, ¢¢) is a 2D real vector consisting of the acceleration o €
[-1,1] and the steering wheel angle ¢; € [—1rad, 1rad].
The robot’s dynamics are subject to control noise v; =
(G4, d¢) ~ N(0,%,). The robot’s transition model is

z¢ + Atvg cos 0
Yy + Atvg sin 0y
9,5 + At tan(@ + ¢t>/011 ’
vy + At(at + dt)

St+1 = f(st,ahvt) =

(18)
where At = 0.3s is the duration of a time step and the value
0.11 is the distance between the front and rear axles of the
wheels.

This robot is equipped with two types of sensors, a
localization sensor that receives a signal from two beacons
that are located at (&1, ¢1) and (Z2, §2). The second sensor is
a velocity sensor mounted on the car. With these two sensors,
the observation model is defined as

1
((wt*i1)2+§yt*@1)2+1)

(@4 —22)%+(ye —92)%+1)
Ut

0t = + wy, (19)

where w; is an error vector drawn from a zero-mean
multivariate Gaussian distribution with covariance matrix
Y-

Similar to the manipulators described above, the robot
receives a penalty of -500 when it collides with an obstacle,
a reward of 1,000 when reaching the goal area and a small
penalty of -1 for any other action.

6.3 Testing SNM

In this set of experiments, we want to understand the
performance of SNM compared to MoNG in various
scenarios. In particular, we are interested in the effect
of increasing uncertainties and the effect that obstacles
have on the effectiveness of SNM, and if these results



Hoerger et al. 9

1 ) 1 8
o9~ Empty Env s —m=Empty Env.
-9 g Factory Env. . 1.6 Factory Env.
0.8 =p= Factory Env. Collision Dynamics 0.8 ——— 1.4 —x—Factory Env. Collision Dynamics
0.7 0.7 . = 12
0.6 0.6 4=
= 05 % 0.5 s
z z 508
% 04 = 04 Elid
= 0.6
03 03
=l 04
0.2 0.2 == Empty Env. N
0.1 0.1 - Factory Env. 0.2
'0 o = Factory Env. Collision Dynamics 0 B—
0.001 0.0195 0.038 0.057 0075 0.001 0.0195 0.038 0.057 0.075 0.001 0.0195 0.038 0.057 0.075
er=e; er=e; er=e;
(a) (b) (©)

Figure 2. Evaluations of the tested measures and the relative value difference between ABT and MHFR for the 4DOFs manipulator
operating in an empty environment (red lines), the Factory environment (green lines) and the Factory environment with collision
dynamics (blue lines). (a) The average values of SNM as the transition (er) and observation (ez) errors increase. (b) The average
values of MoNG as the transition and observation errors increase. (c) The relative value difference between ABT and MHFR as the
transition and observation errors increase.
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Figure 3. Evaluations of the tested measures and the relative value difference between ABT and MHFR for the Car-like robot
operating in an empty environment (red lines), the Maze environment (green lines) and the Maze environment with collision
dynamics (blue lines). (a) The average values of SNM as the transition (er) and observation (ez) errors increase. (b) The average
values of MoNG as the transition and observation errors increase. (c) The relative value difference between ABT and MHFR as the

transition and observation errors increase.

are consistent with the performance of a general solver
relative to a linearization-based solver. Additionally, we
want to see how highly-nonlinear collision dynamics and
different observation models — one with additive Gaussian
noise and non-additive Gaussian noise — affect our measure.
For the experiments with increasing motion and sensing
errors, recall from Section 6.2 that the control errors are
drawn from zero-mean multivariate Gaussian distributions
with covariance matrices >,,. We define the control errors
(denoted as er) to be the standard deviation of these
Gaussian distributions, such that >, = e% x 1. Similarly,
for the covariance matrices of the zero-mean multivariate
Gaussian sensing errors, we define the observation error
as ez, such that ¥, = €2Z x 1. Note that during all the
experiments, we use normalized spaces, which means that
the error vectors affect the normalized action and observation
vectors. For SNM and MoNG we first generated 100,000
state samples for each scenario, and computed a lookup table
for each error value offline, as discussed in Section 4. Then,
during run-time, we calculated the average approximated
SNM and MonG values.

6.3.1 Effects of increasing uncertainties in cluttered
environments. To investigate the effect of increasing
control and observation errors on SNM, MoNG and the two
solvers ABT and MHFR in cluttered environments, we ran
a set of experiments where the 4DOFs manipulator and the
car-like robot operate in empty environments, environments
with obstacles, and environments where the robots interact
with the environment via collision dynamics with increasing
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values of er and ez, ranging between 0.001 and 0.075.
For the last set of environments, the robots are allowed to
collide with the obstacles, i.e., a collision does not result
in a terminal state. The dynamics effects of collisions are
reflected in the transition model. In particular, for the 4DOFs
manipulator, collisions are modeled as additional constraints
(contact points) that are resolved by applying “correcting
velocities” to the colliding bodies in the opposite direction
of the contact normals. For the car-like robot, we modify the
transition model eq. (18) to consider collision dynamics such
that

fcol (St, ag, Ut) if f(St, ag, Ut) COHideS,

20
f(3t7at7vt) ( )

St+1 =
else

where
T
fcoll(st;atavt) = [Iuyt,et’*&%} . 2n

This transition function causes the robot to slightly
“bounce” off obstacles upon collision.

The environments with obstacles (both with and without
collision dynamics) are the Factory and Maze environments
shown in Figure 1(a) and (b). For each scenario and each
control-sensing error value (we set e = ez), we ran 100
simulation runs using ABT and MHFR respectively with a
planning time of 2s per step.

Figure 2 and Figure 3 show the average values of SNM and
MoNG and the relative value differences between ABT and
MHEFR for the 4DOFs manipulator and the car-like robot,
respectively. The results show that in empty environments,
both SNM and MoNG are sensitive to increasing transition
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Figure 4. Evaluations of the tested measures and the relative value difference between ABT and MHFR on the 4DOFs manipulator
(top row) and the Car-like robot (bottom row) operating in environments with increasing numbers of obstacles. (a) The average
values of SNM (red line) and MoNG (blue line) for the 4DOFs manipulator operating inside environments with increasing numbers
of obstacles. (b) The relative value difference between ABT and MHFR for the 4DOFs manipulator operating in environments with
increasing numbers of obstacles. (c) The average values of SNM (red line) and MoNG (blue line) for the Car-like robot operating
inside environments with increasing numbers of obstacles. (d) The relative value difference between ABT and MHFR for the
Car-like robot operating inside environments with increasing numbers of obstacles.

and observation errors. This resonates well with the relative
value difference between ABT and MHFR. However,
for environments with obstacles and environments with
collision dynamics, SNM increases significantly compared
to the empty environments, whereas MoNG remains almost
unaffected in the Factory and Maze environments and only
increases marginally as collision dynamics are introduced.
Overall, the added non-linearities introduced by obstacles
and collision dynamics increase the value difference between
ABT and MHFR, except for large uncertainties in the Maze
environment. This indicates that MHFR suffers more from
the added non-linearities compared to ABT. SNM is able to
capture these effects much better compared to MoNG.

An interesting remark regarding the results for the Maze
scenario in Figure 3(c) is that the relative value difference
actually decreases for large uncertainties. The reason for this
can be seen in Figure 5. As the uncertainties increase, the
problem becomes so difficult, such that both solvers fail to
compute a reasonable policy within the given planning time.
However, clearly, MHFR suffers earlier from these large
uncertainties compared to ABT.

6.3.2 Effects of increasingly cluttered environments. To
investigate the effects of increasingly cluttered environments
on SNM and MoNG, we ran a set of experiments in
which the car-like robot and the 4DOFs manipulator operate
inside environments with an increasing number of randomly
distributed obstacles. For this we generated test scenarios
with 5, 10, 15, 20, 25 and 30 obstacles that are uniformly
distributed across the environment. For each of these
test scenarios, we randomly generated 100 environments.
Figure 6 shows two example environments with 30 obstacles
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Figure 5. The average total discounted rewards achieved by
ABT and MHFR in the Maze scenario, as the uncertainties
increase. Vertical bars are the 95% confidence intervals.

(a) Car-like robot

(b) 4DOFs manipulator

Figure 6. Two example scenarios for the Car-like robot (a) and
the 4DOFs manipulator (b) with 30 randomly distributed
obstacles.
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Table 1. Comparison between the observation component of function defined in eq. (17) with

SNM and MoNG for the 4DOF manipulator operating inside the

Factory environment with (a) observation function eq. (17) and 0y = g(st + wy) (22)

(b) observation function eq. (22) as the observation errors
increase.

(a) Factory environment, additive observation errors

ez 0.001 0.0195 0.038 0.057 0.075

SNM | 0.001 0.007 0.012 0.038 0.047

MonG | 0.0 0.0 0.0 0.0 0.0

(b) Factory environment, non-additive observation errors

ez 0.001 0.0195 0.038 0.057 0.075
SNM | 0.017 0.086 0.181 0.232 0.325
MonG | 0.0 0.041  0.091 0.141 0.175

Table 2. Comparison between the observation component of
SNM and MoNG for the car-like robot operating inside the Maze
environment with (a) observation function eq. (19) and (b)
observation function eq. (23) as the observation errors increase.

(a) Maze environment, additive observation errors

ez 0.001 0.0195 0.038 0.057 0.075
SNM | 0.002 0.014 0.037 0.051 0.059
MonG | 0.0 0.0 0.0 0.0 0.0

(b) Maze environment, non-additive observation errors

ez 0.001 0.0195 0.038 0.057 0.075
SNM | 0.081 0.086  0.112 0.191 0.217
MonG | 0.0 0.010  0.037 0.056 0.072

for the Car-like robot and the 4DOFs manipulator. For this
set of experiments, we do not take collision dynamics into
account. The control and observation errors are fixed to
er = e, = 0.038 which corresponds to the median of the
uncertainty values.

Figure 4 presents the results for SNM, MoNG and
the relative value difference between ABT ant MHFR for
the 4DOFs manipulator (top row) and the car-like robot
(bottom row). From these results it is clear that, as the
environments become increasingly cluttered, the advantage
of ABT over MHFR increases, indicating that the obstacles
have a significant effect on the Gaussian belief assumption of
MHFR. Additionally, SNM is clearly more sensitive to those
effects compared to MoNG, whose values remain virtually
unaffected by the amount of clutter in the environments.

6.3.3 Effects of non-linear observation functions with
non-additive errors. In the previous experiments, we
assumed that the observation functions are non-linear
functions with additive Gaussian noise, a special class of
non-linear observation functions. This class of observation
functions has some interesting implications: First, the
resulting observation distribution remains Gaussian. This
in turn means that MoNG for the observation function
evaluates to zero. Second, linearizing the observation
function results in a Gaussian distribution with the same
mean but different covariance. We therefore expect that the
observation component SNM remains small, even for large
uncertainties. To investigate how SNM reacts to non-linear
observation functions with non-additive noise, we ran a set of
experiments for the 4DOFs manipulator operating inside the
Factory environment and the car-like robot operating inside
the Maze environment where we replaced both observation
functions with non-linear functions with non-additive noise.
For the 4DOFs manipulator, we replaced the observation
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where w; ~ N(0,%,,). In other words, the manipulator has
only access to a sensor that measure the position of the end-
effector in the workspace.

For the car-like robot, we use the following observation
function:

1
((xt+w§—a‘n)2+§yt+w?—@1)2+1)
((wetwi—22)2+(ye twi —§2)2+1) |

v + wf’

(23)

O =

where (wf,w?, w?)T ~ N(0,%,,). For both robots, we set
er = 0.038.

Table 1 shows the values for the observation components
of SNM and MoNG for the 4DOFs manipulator operating
inside the Factory environment as the observation errors
increase. As expected, for additive Gaussian errors, MoONG
is zero, whereas SNM is small but measurable. This shows
that SNM is able to capture the difference of the variance
between the original and linearized observation functions.
For non-additive errors, the observation function is non-
Gaussian, therefore we can see that both measures increase
as the observation errors increase. Interestingly, for both
measures, the observation components yield significantly
smaller values compared to the transition components. This
indicates that the non-linearity of the problem stems mostly
from the transition function.

For the -car-like robot operating inside the Maze
environment, we see a similar picture. For the observation
function with additive Gaussian errors, Table 2(a) shows
that MoNG remains zero for all values of ey, whereas
SNM yields a small but measurable value. Again, both
measures increase significantly in the non-additive error case
in Table 2(b).

The question is now, how do ABT and MHFR perform in
both scenarios when observation functions with non-additive
Gaussian errors are used? Figure 7 shows this relative value
difference for the 4DOFs manipulator operating inside the
Factory environment and the car-like robot operating in
the Maze environment, both robots subject to non-additive
observation errors. It can be seen that as the observation
errors increase, the relative value difference between ABT
and MHFR increase significantly. This is in line with our
intuition that non-Gaussian observation functions are more
challenging for linearization-based solvers.

6.4 Testing SNM-Planner

In this set of experiments, we want to test the performance
of SNM-Planner in comparison with the two component
planners ABT and MHFR. To this end, we tested SNM-
Planner on four problem scenarios: The Maze scenario for
the car like robot shown in Figure 1(a) and the Factory
scenario for the 4DOFs manipulator. The third scenario is
the Kuka iiwa robot operating inside an office environment,
as shown in Figure 1(b). Similarly to the Factory scenario,
the robot has to reach a goal area while avoiding collisions
with the obstacles. Finally, we tested SNM-Planner on
the JacoCollab scenario described in Section 6.2.3 and
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Figure 7. Relative value difference between ABT and MHFR for the 4DOFs manipulator and the car-like robot operating in
environments with non-additive observation errors, as the observation errors (ez) increase. (a) The 4DOFs manipulator operating
in the Factory environment. (b) The car-like robot operating in the Maze environment.

Table 3. Average total discounted reward and £95% confidence interval over 1,000 simulation runs. The proportion of ABT being
used in the Maze, Factory and KukaOffice scenarios is 37.85%, 56.43% and 42.33% respectively. The best result for each problem
is highlighted in bold.

Maze Factory KukaOffice JacoCollab
SNM-Planner 174 +248 837.2+125 639.3 £33.8 394 +3.7
ABT —42.6 £ 31.2 806.7 £ 23.2 510.6 &+ 29.9 32.1+£38
MHFR —89.7 £ 28.7 384.7 £ 58.4 —132.5 £ 28.7 25.7+ 4.1
MoNG-Planner | —73.5 £ 29.4 436.4 + 51.7 —129.5 +29.3 33.1+3.8

Table 4. Success rate and +95% confidence intervals of all tested solvers in the Maze, Factor, KukaOffice and JacoCollab
scenarios. The success rate is computed with respect to 1,000 simulation runs per problem and solver. We assume that the
success rate follows a Binomial distribution with unknown success probability p and use the Clopper-Pearson interval (Clopper and
Pearson 1934) as the confidence interval. The best result for each problem is highlighted in bold.

Maze Factory KukaOffice JacoCollab
SNM-Planner 092+0.01 097£001 093+0.01 093+0.01
ABT 0.81+0.02 0.95+0.01 0.87+£0.02 0.92+£0.01
MHFR 0.74+0.02 0.83+£0.02 0.69+£0.03 0.72+£0.02
MoNG-Planner | 0.78 £0.02 0.86+0.02 0.71+£0.02 0.92+£0.01

shown in Figure 1(d). To further test the advantage of
SNM in online POMDP planning compared to MoNG, we
implemented a variant of SNM-Planner that uses MoNG as
the heuristic instead of SNM. In particular, we replace line 5
in Algorithm 1 with a function APPROXIMATEMONG(b)
that computes a local approximation of MoNG around
the current belief b. Similarly to the method described in
Section 4, we approximate MoNG for a set of state samples
offline, and re-use the approximated MoNG values online.

To determine the best SNM and MonG thresholds, we
first ran a set of preliminatry tests using 10 values between
0.1 and 0.9. We found that for both measures, a value
of 0.5 performed best across the scenarios. Thus, in all
scenarios, we set the SNM and MonG threshold to 0.5. In
Section 6.4.1 we provide a more in-depth analysis on how
varying threshold values affect the performance of SNM-
Planner. Additionally, for all scenarios, we use e = ez =
0.038. The planning time per step for the Maze and Factory
scenario is 2s, while we use a planning time of 8s and 1s for
the KukaOffice and JacoCollab scenarios, respectively.

The results in Table 3 and Table 4 indicate that SNM-
Planner is able to approximately identify when it is beneficial
to use a linearization-based solver and when a general
solver should be used. In all four scenarios, SNM-Planner
outperforms both the two component planners and MoNG-
Planner. In the Maze scenario, the difference between SNM-
Planner and the baselines is significant. The reason is, MHFR
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is well suited to compute a long-term strategy, as it constructs
nominal trajectories from the current state estimate all the
way to the goal, whereas the planning horizon of ABT is
limited by the depth of the search tree. However, in the
proximity of obstacles, the Gaussian belief assumption of
MHEFR are no long valid, and careful planning is required to
avoid collisions with the obstacles. In general, ABT handles
these situations better than MHFR. SNM-Planner combines
the benefits of both planners and alleviates their shortcoming.
Figure 8 shows state samples for which the SNM-values
exceed the given threshold of 0.5. It is obvious that many of
these samples are clustered around obstacles. In other words,
when the support set of the current belief (i.e. the subset of
the state space that is covered by the belief particles) lies
in open areas, MHFR is used to drive the robot towards the
goal, whereas in the proximity of obstacles, ABT is used to
compute a strategy that avoids collisions with the obstacles.
As we have seen in the previous section, MonG much less
sensitive to obstacles in the environment compared to SNM.
As a result, MoNG-Planner cannot replicate SNM-Planner’s
strategic choice of the component planner, resulting in an
overall worse performance.

A similar behavior was observed in the KukaOffice
environment. During the early planning steps, when the robot
operates in the open area, MHFR is well suited to drive
the end-effector towards the goal area, but near the narrow
passage at the back of the table, ABT in general computes
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Figure 8. State samples in the Maze scenario for which the
approximated SNM value exceeds the chosen threshold of 0.5.

better motion strategies. Again, SNM-Planner combines both
strategies to compute better motion strategies than each
of the component planners alone, while MoNG-Planner is
unable to correctly identify situations in which MHFR or
ABT should be used.

In the JacoCollab scenario, MHFR tends to compute
strategies that move the robot to the goal as quickly as
possible. However, those strategies are often too aggressive,
resulting in collisions with the worker. On the other hand,
for ABT, the robot tends to spend too much time in a safe
region behind the worker, and only making slow progress
towards the goal. SNM-Planner uses MHFR to compute a
strategy that quickly leads to the goal, while it uses ABT
when the robot is in the vicinity of the worker. This results
in strategies that reach the goal quickly, while maintaining
safety when the robot is near the worker, as reflected by the
results in Table 3 and Table 4.

Table 5. Average total discounted reward and 95% confidence
intervals of SNM-Planner on the Factory problem for varying
SNM-threshold values. The average is collected over 1,000
simulation runs. The last column shows the percentage of steps
where ABT is used as the component solver.

SNM-Threshold | Avg. total discounted reward % ABT used

0.1 804.59 + 18.4 100.0

0.2 809.62 £ 15.1 95.4

0.3 817.21 +14.1 90.5

0.4 825.74 £ 13.0 67.3

0.5 839.22+12.8 58.3

0.6 754.73 +17.4 41.7

0.7 701.46 +17.9 32.1

0.8 621.36 £ 27.6 20.7

0.9 467.82 £ 35.2 7.9

Table 6. Average total discounted reward and 95% confidence
intervals of MonG-Planner on the Factory problem for varying
MonG-threshold values. The average is collected over 1,000
simulation runs. The last column shows the percentage of steps
where ABT is used as the component solver.

SNM-Threshold | Avg. total discounted reward % ABT used
0.1 421.68 £ 54.3 48.8
0.2 420.32 £ 53.8 48.3
0.3 431.79 £53.9 46.9
0.4 431.87 +52.8 47.2
0.5 436.48 £51.7 46.8
0.6 403.67 £52.9 43.7
0.7 407.39 £ 50.7 43.8
0.8 401.51 +49.9 41.9
0.9 396.78 £52.8 39.9
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6.4.1 Sensitivity of SNM-Planner and MonG-Planner. In
this experiment, we test how sensitive the performances of
SNM-Planner and MonG-Planner are to the choice of the
SNM and MonG thresholds respectively. Recall that both
planners use these thresholds to decide at each planning step
which solver to use for the policy computation, based on a
local approximation of the measures. For small thresholds
the planners favor ABT, whereas for large thresholds MHFR
is favored.

For this experiment, we test both SNM-Planner an MonG-
Planner on the Factory problem (Figure 1(b)) with multiple
values for the SNM and MonG thresholds, ranging from 0.1
to 0.9. For each threshold value, we estimate the average total
expected discounted reward achieved by both planners using
1,000 simulation runs. Here we set e = ez = 0.038.

Table 5 summarizes the results for SNM-Planner. It can
be seen that the choice of the threshold can affect the
performance of SNM-Planner, particularly for values that
are on either side of the spectrum (very small values or
very large values) where SNM-Planner favors only one
of the component solvers. However, between the threshold
values of 0.2 and 0.5 the results are fairly consistent, which
indicates that there is a range of SNM-threshold values for
which SNM-Planner performs well.

Table 6 shows the results for MonG-Planner. They indicate
that the choice of the MonG-threshold has a minor effect
on the performance of MonG-Planner. For all threshold
values, MonG-Planner performs worse compared to SNM-
Planner, which further indicates that SNM is more suitable
in identifying situations where linearization is beneficial and
where it should be avoided.

7 Summary and Future Work

This paper presents our preliminary work in identifying
the suitability of linearization for motion planning under
uncertainty. To this end, we present a general measure of
non-linearity, called Statistical-distance-based Non-linearity
Measure (SNM), which is based on the distance between
the distributions that represent the system’s motion—sensing
model and its linearized version. Comparison studies with
one of state-of-the-art methods for non-linearity measure
indicate that SNM is more suitable in taking into account
obstacles in measuring the effectiveness of linearization.

We also propose a simple online planner that uses a
local estimate of SNM to select whether to use a general
POMDP solver or a linearization-based solver for robot
motion planning under uncertainty. Experimental results
indicate that our simple planner can appropriately decide
where linearization should be used and generates motion
strategies that are comparable or better than each of the
component planner.

Future work abounds. For instance, the question for a
better measure remains. The total variation distance relies
on computing a maximization, which is often difficult
to estimate. Statistical distance functions that rely on
expectations exists and can be computed faster. How suitable
are these functions as a non-linearity measure? Furthermore,
our upper bound result is relatively loose and can only be
applied as a sufficient condition to identify if linearization
will perform well. It would be useful to find a tighter bound



14

International Journal of Robotics Research XX(X)

that remains general enough for the various linearization and
distribution approximation methods in robotics.
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A Appendix

For writing compactness, we use the following short-
hand notations for the transition and observation functions
throughout the next two subsections: T' = T'(s,a,s’), T =
T(s,a,s') and Z = Z(s',a,0), Z = Z(s',a,0). Addition-
ally, in Appendix A.2 we use the notations Ty, = T'(sk, a, s’)
and Ty, = T(sy,, a, s').

A.1

Consider any o € I' with its action a € A and observation
strategy v. Then for any s € S, we have that

g (8) — Qo (s)]
= ‘R(& a) + ’y/ / TZO[V(O)(S/)dOdS/
s'eS JoeO

/ / T26,(0)(s')dods'

s'es

- / / TZ0(0)(s') = TZ8, (o) (s')dods'
s'eS JoeO

Sﬁy ( / / TZ [aV(o) (SI) _ alz(o) (S/)} dods’

s’'eS JoeO

+ / / Ay (0)(s") [TZ - f?} dods’' ) . (24)

s'eS JoeO

Let’s take a look at the second term on the right-hand side

of eq. (24), that is
/ / Gy(o)(5") [TZ _ fZ] dods’
s’'eS JoeO

(25)

Proof of Lemma 3

—R(s,a)

term2(s,a) =

We can expand this term as follows:

term2(s, a)

- / / (o) (5') [TZ ~TZ+TZ -~ TZ} dods’
s’eS JoeO

/ r- ﬂ/ 8o (s') Zdods’
s'esS
/SES ~/O\EO
/ ’T T/ |G (o) (57)| Zdods'
s’'eS
ot

The term |a,,(o) (s) ] can be upper-bounded via ]&,,(O) (s") |
% for any s € .S, which yields

<

Z Z} dods’

’Z Z‘ dods'. (26)

<

term2(s, a)
i {/ ’T - ﬂ ds' + /
s'eS s'es

< —m

S
From the definition of the total variation distance, it follows
that [, ¢ ’T — f‘ ds'" = 2D (T, T) for any given s € S
and a € A and [ _, ‘Z — 2‘ do = 2D;,"}1(Z, Z) for any
given s’ € S. Substituting these equalities into eq. (27) and

@7
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T\/ ’ZZ’dods’].
oe0

taking the supremum over the conditionals s, s’ and a allows
us to upper-bound eq. (27) by

R, ~
term2(s,a) < 217\11(13, pP).
-7

Substituting this upper bound into eq. (24) yields

|ao(5) - aa(s)‘

<y 2R7m\1/(P, P)

/ / TZ o) (5') — ooy (57)] dods’
s'eS JoeO
<y (2\1/(13 P)

+/ / TZ |ay(o)(8") = G (o) (5)] dods') .
s’'eS JoeO

(29)

(28)

The last term on the right-hand side of eq. (29) is essentially
a recursion. Unfolding this recursion yields

las(s) — @y (s)] < 2y (30)

which is Lemma 3. [J

A.2 ProofoflLemma5

We can write the absolute difference between the SNM-
values conditioned on two states s1, s5 € S; as

|Wr(s1) — Yr(s2)]

= |sup Dry (11, Th) — sup Dpy (Ts, Ts)

acA acA
- sup sup / f(s } ds’
aGA [f1<1
—= sup sup / f(s T2 — fg} ds' (31)
2 acA|fi<1
Manipulating the algebra allows us to write
|Ur(s1) — ¥r(s2)
<*SUP sup (/ f(s") [Ty — Tp] ds
2 acA ||f1<1
i
Sf sup | sup F(s) |1 — Ty| ds'
2 aea \|f|1<1 Jses
+ sup (s") ‘fl - fg’ ds'
IfI<1/s’es
1
<3 Ds(s1,52) O+ C | (32)
For the last inequality we bound the terms |77 — 75| and

‘ﬁ - fg‘ using Definition 4. Furthermore, we use the fact

that sup| <y [, cg f(s')ds’ =1, assuming that the state
space S is normalized. This concludes the proof of Lemma 5.
O
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