
Multilevel Monte Carlo for Solving
POMDPs Online

Journal Title
XX(X):1–17
©The Author(s) 2022
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Marcus Hoerger1, Hanna Kurniawati1, Alberto Elfes2

Abstract
Planning under partial observability is essential for autonomous robots. A principled way to address such planning
problems is the Partially Observable Markov Decision Process (POMDP). Although solving POMDPs is computationally
intractable, substantial advancements have been achieved in developing approximate POMDP solvers in the past two
decades. However, computing robust solutions for systems with complex dynamics remains challenging. Most on-line
solvers rely on a large number of forward-simulations and standard Monte Carlo methods to compute the expected
outcomes of actions the robot can perform. For systems with complex dynamics, e.g., those with non-linear dynamics
that admit no closed form solution, even a single forward simulation can be prohibitively expensive. Of course, this
issue exacerbates for problems with long planning horizons. This paper aims to alleviate the above difficulty. To this
end, we propose a new on-line POMDP solver, called Multilevel POMDP Planner (MLPP), that combines the commonly
known Monte-Carlo-Tree-Search with the concept of Multilevel Monte Carlo to speed-up our capability in generating
approximately optimal solutions for POMDPs with complex dynamics. Experiments on four different problems involving
torque control, navigation and grasping indicate that MLPP substantially outperforms state-of-the-art POMDP solvers.

Keywords
Agent-Based Systems, Autonomous Agents, Nonholonomic Motion Planning

1 Introduction

Planning under partial observability is both challenging and
essential for autonomous robots. To operate reliably, an
autonomous robot must act strategically to accomplish its
tasks, despite being subject to various types of uncertainties,
such as motion and sensing uncertainty, and uncertainty
regarding the environment the robot operates in. Due
to these uncertainties, the robot does not have full
observability on its state of and/or the state of its operating
environment. The Partially Observable Markov Decision
Processes (POMDP) Sondik (1971) is a mathematically
principled way to solve such planning problems.

Although solving a POMDP exactly is computationally
intractable Papadimitriou and Tsitsiklis (1987), the past
two decades have seen tremendous progress in developing
approximately optimal solvers that trade optimality for
computational tractability, enabling POMDPs to start to
become practical for various robotic planning problems Bai
and Hsu (2012); Horowitz and Burdick (2013); Hsiao et al.
(2007); Wandzel et al. (2019); Hoerger et al. (2019b).

Most state-of-the-art on-line solvers, such as POMCP Sil-
ver and Veness (2010), DESPOT Somani et al. (2013), and
ABT Kurniawati and Yadav (2013) rely on a large number
of forward simulations of the system and standard Monte
Carlo methods to estimate the expected values of differ-
ent sequences of actions. While this strategy has substan-
tially improved state-of-the-art solvers, their performance
degrades for problems with complex non-linear dynamics
where even a one-step forward simulation requires expensive
numerical integrations. Aside from complex dynamics, long
planning horizon problems —that is, problems that require

more than 10 look-ahead steps before a good solution can
be found— remain challenging for on-line solvers. In such
problems, even when the computational cost for a one-step
forward simulation is cheap, the solver must evaluate long
sequences of actions before a good solution is found.

Although complex dynamics and long planning horizons
seem like separate issues, both can be alleviated via
simplified dynamics. For instance, simplifying the dynamics
to reduce the cost of a one-step forward simulation would
alleviate the first issue, while simplifying the dynamics,
so as to reduce the amount of control inputs switching,
could reduce the effective planning horizon. Simplified
dynamics models are widely used in deterministic planning
and control, albeit less so in solving POMDPs.

In this paper we propose a sampling-based on-line
POMDP solver, called Multilevel POMDP Planner (MLPP),
that uses multiple levels of approximation to the system’s
dynamics to reduce the number and complexity of forward
simulations needed to compute near-optimal policies.
MLPP combines the commonly used Monte-Carlo-Tree-
Search Kocsis and Szepesvári (2006) with a relatively
recent concept in Monte Carlo, called Multilevel Monte
Carlo (MLMC) Giles (2015); Heinrich (2001). MLMC
is a variance reduction technique that uses cheap and
coarse approximations to the system to carry out the
majority of the simulations and combines them with a small

1School of Computing, College of Engineering & Computer Science, The
Australian National University
2Rest In Peace. The majority of this work was conducted while the author
was with the Robotics and Autonomous Systems Group, Data61, CSIRO
Email: hoergems@gmail.com, hanna.kurniawati@anu.edu.au

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

number of accurate but expensive simulations to maintain
correctness. By constructing a set of correlated samples
from a sequence of approximations to the original system’s
dynamics, in conjunction with applying Multilevel Monte
Carlo estimation to compute the expected value of sequences
of actions, MLPP is able to compute near-optimal policies
substantially faster than two of the fastest today’s on-line
solvers on four challenging robotic planning tasks under
uncertainty. Two of these scenarios are articulated robots
with torque control, while the other two required planning
horizon of more than 10 steps. We also show that under
certain conditions, MLPP converges asymptotically to the
optimal solution.

This paper extends our previous work Hoerger et al.
(2019a) in three ways: First, in Section 3.3 we propose a
more efficient strategy to select the levels of approximation
to the system’s dynamics during planning. This strategy
is adaptive to the estimated cost and utility of performing
forward simulations on each level of approximation.
Second, in Section 4.4.3 we provide new experimental
results to understand how the performance of MLPP is
affected by dynamics models of varying costs, compared
to the two baseline solvers. And third, in Section 5, we
present a substantially improved analysis on the asymptotic
convergence of MLPP towards the optimal solution.

2 Background

2.1 Partially Observable Markov Decision
Process (POMDP)

Formally a POMDP is a tuple < S,A,O, T, Z,R, γ >,
where S, A and O are the state, action and observation
spaces of the robot. At each step, the robot is in some
state s ∈ S, executes an action a ∈ A, transitions to a
next state s′ ∈ S and perceives an observation o ∈ O.
Additionally, the robot receives a reward according to the
reward function R(s, a) when executing action a from
state s. However, the effect of executing actions and
perceiving observations is uncertain due to errors in control
and perception. T and Z model these uncertainties as
conditional probability functions T (s, a, s′) = p(s′|s, a) and
Z(s′, a, o) = p(o|s′, a).

Due to these uncertainties the current state of the robot
and the environment is only partially observable. Thus,
given a history ht = {a0, o0, ..., at, ot} of previous actions
and observations, the robot maintains a belief b(s, ht), a
probability distribution over states, conditioned on history
ht, which provides a sufficient statistic that summarizes all
previous information necessary to select an optimal action
from the current belief.

At each step, the robot selects an action according to a
policy π(ht), a mapping from histories to actions. The value
of a policy π is the expected discounted infinite-horizon
future reward the robot receives when following π given
history h, i.e. Vπ(h) =

∑∞
t=0 γ

tE[rt|h, π], where 0 < γ < 1
is a discount factor which ensures that Vπ(h) is finite and
well-defined, while rt is the immediate reward received at
time t. The goal in POMDP-planning is then to compute
an optimal policy π∗ such that π∗ = arg maxπ Vπ(h) with
optimal value function V ∗(h) = Vπ∗(h). For any POMDP,

there is at least one optimal policy with corresponding
optimal value function V ∗(h).

Note that the above POMDP framework can be extended
to consider belief-dependent reward functions Araya et al.
(2010); Fischer and Tas (2020), i.e. reward functions of the
form R(b(·, h), a). This is helpful for problems where the
objective is to explicitly reduce uncertainty regarding the true
state, such as pure information gathering tasks Mihaylova
et al. (2002). However, in this paper we focus on the
”classical” case of state-action dependent reward functions.

2.2 Related POMDP Solvers
While computing optimal policies is computationally
intractable for all but the simplest POMDP
problems Papadimitriou and Tsitsiklis (1987), in the past
two decades we have seen a surge in approximate-optimal
POMDP solvers that are tractable for increasingly complex
robotic planning problems under partial observability. Key
to their success is the use of sampling, which enables them
to trade optimality with computational tractability. Existing
state-of-the art POMDP solvers can be broadly classified
into off-line and on-line solvers.

Off-line solvers such as Kurniawati et al. (2008); Pineau
et al. (2003); Smith and Simmons (2005); Kurniawati et al.
(2011); Bai et al. (2014) typically construct a sampled
representation of the belief space and compute a policy
with respect to the sampled beliefs. In contrast, on-line
solvers interleave policy computation and policy execution
by computing an approximate-optimal policy for the current
belief state only. Once a given planning budget is exceeded,
the robot executes an action according to the computed
policy, receives an observation from the environment, and
updates its belief state based on the executed action and
perceived observation. This process then repeats from the
new belief state.

Many on-line solvers evaluate different sequences of
actions by performing forward-search in a lookahead-tree,
starting from the current belief, where beliefs are typically
represented by sets of particles. For instance POMCP Silver
and Veness (2010) and ABT Kurniawati and Yadav
(2013) are based on UCT Kocsis and Szepesvári (2006),
a Monte-Carlo-Tree-Search (MCTS) method that selects
actions during sampling according to Upper Confidence
Bounds1 (UCB1) Auer et al. (2002), a popular algorithm
for Multi-Arm-Bandit problems Sutton and Barto (2012).
DESPOT Somani et al. (2013) and its variants Garg et al.
(2019); Luo et al. (2019); Cai et al. (2021) use a combination
of Monte-Carlo sampling, heuristic search and branch-
and-bound pruning to build a sparse representation of the
lookahead-tree. This strategy has enabled the above methods
to scale to very large problems, including problems with
continuous state spaces.

More recently, MCTS-based methods have been extended
to handle problems with large or continuous action and
observation spaces. QBASE Wang et al. (2018) can
handle problems with up to 10,000 discrete actions by
extending the cross-entropy method Rubinstein and Kroese
(2013) to MCTS. GPS-ABT Seiler et al. (2015) uses
General Pattern Search, a derivative-free optimization
method to search for local optima in continuous action
spaces. LABECOP Hoerger and Kurniawati (2021) handles

Prepared using sagej.cls

Hoerger et al. 3

continuous observation spaces by maintaining a set of
sampled episodes, i.e. sequences of state-action-observation-
reward quadruples to approximate both beliefs and action
values. POMCPOW Sunberg and Kochenderfer (2018),
BOMCP Mern et al. (2021), VOMCPOW Lim et al. (2020)
and IPFT Fischer and Tas (2020) extend POMCP with
Double Progressive Widening Couëtoux et al. (2011). These
methods incrementally add sampled actions and observations
to the lookahead-tree as planning progresses, allowing them
to consider both continuous action and observation spaces.

Another line of research aims to alleviate the issue with
large action spaces by formulating the belief-space planning
problem as a stochastic control problem. For instance, the
methods in Van Den Berg et al. (2012, 2011); Sun et al.
(2015); Agha-Mohammadi et al. (2011) restrict the transition
and observation dynamics to be linear(ized) and the beliefs to
be Gaussian to construct Linear-Quadratic-Gaussian (LQG)
feedback-controllers Lindquist (1973). While these methods
can scale to very large action spaces, the robustness of the
resulting policies can suffer for problems with significant
non-linearities and large uncertainties, where the Gaussian
belief assumption no longer holds Hoerger et al. (2020). A
more extensive review of the recent advances in POMDP
solving is available in Kurniawati (2022).

This paper focuses on the general POMDP and follows
the MCTS-based approach, but we focus on a different issue,
compared to the above work. A common bottleneck shared
by tree-search-based POMDP solvers is that they typically
require large amounts of sampled episodes to accurately
estimate the action values. Consequently, for problems
with complex non-linear dynamics where sampling even
a single trajectory is expensive, their performance quickly
deteriorates, particularly when the computational budget is
limited. Our method aims to alleviate exactly this issue.

Note that our method is general enough to be applied to
many tree-search based POMDP solvers, including those that
consider continuous action and observation spaces Sunberg
and Kochenderfer (2018); Mern et al. (2021); Lim et al.
(2020). However, in this paper we focus on problems with
continuous state spaces, but discrete action and observation
spaces.

2.3 Multilevel Monte Carlo
Since its introduction in 2001, MLMC has been used to
significantly reduce the computational effort in applications
that involve computing expectations from expensive simu-
lations Giles (2008); Bierig and Chernov (2016); Anderson
and Higham (2012). Here, we provide a brief overview of
the underlying concept of MLMC. An extensive overview is
available in Giles (2015).

Suppose we have a random variable X and we wish to
compute its expectation E[X]. A simple Monte Carlo (MC)
estimator for E[X] is E[X] ≈ 1

N

∑N
i=1X

(i), where X(i) are
iid. samples drawn from X . In many applications sampling
from X directly is expensive, causing the MC-estimator to
converge slowly.

The idea of MLMC is to use the linearity of expectation
property to reduce the cost of sampling. Suppose,
X0, X1, X2, . . . , XL is a sequence of approximations to X ,
where limL→∞XL = X and the approximations increase in

accuracy and sampling cost as the index increases. Using the
linearity of expectation, we have the simple identity:

E[X] = E[X0] +

L∑
l=1

E[Xl −Xl−1] (1)

and can design the unbiased estimator:

E[X] ≈ 1

N0

N0∑
i=1

X
(0,i)
0 +

L∑
l=1

1

Nl

Nl∑
i=1

(X
(l,i)
l −X(l,i)

l−1) (2)

where the inclusion of the level in the superscript (l, i)
indicates that the samples are independent for each of the
difference terms on the right-hand side of eq.(2). The key
here is that even though the samples at each level are
independent, the individual samples X(l,i)

l and X(l,i)
l−1 for the

l-th difference term are correlated, such that their differences
have a small variance. Of course, the aim is to be able
to sample only from the first few approximations while
still computing a relatively good approximation of E[X].
It turns out, if we define the sequence of approximations
appropriately Giles (2015), the variance V [Xl −Xl−1]
becomes smaller for increasing level l, and therefore we
require fewer and fewer samples to accurately estimate the
expected differences. This means we can take the majority of
the samples at the coarser levels, where sampling is cheap,
and only a few samples are required on the finer levels,
thereby leading to a substantial reduction of the cost to
estimate E[X] accurately.

3 Multilevel POMDP Planner (MLPP)
MLPP is an anytime on-line POMDP solver. Starting from
the current history ht, MLPP computes an approximation to
the optimal policy by iteratively constructing and evaluating
a search tree T , a tree whose nodes represent histories and
edges represent a pair of action-observation. From hereafter,
we use the term nodes and the histories they represent
interchangeably. A history h′ is a child node of h via
edge (a, o) if h′ = hao (the notation hao is shorthand for
appending action a and observation o to the history h). The
root of T corresponds to an empty history h0. The policy of
MLPP is embedded in T via π(h) = arg maxa∈A Q̂(h, a),
where Q̂(h, a) is an approximation of Q(h, a) = R(h, a) +
γEo∈O[Vπ∗(hao)], i.e. the expected value of executing a
from h and continuing optimally afterwards.

To compute Q̂, MLPP constructs T using a framework
similar to POMCP Silver and Veness (2010) and ABT Kur-
niawati and Yadav (2013): Given the current history ht,
MLPP repeatedly samples episodes starting from ht. An
episode e is a sequence of (s, a, o, r)-quadruples, where the
state s ∈ S of the first quadruple is distributed according
to the current belief bt – we approximate beliefs by sets of
particles – and the states of all subsequent quadruples are
sampled from the transition function T , given the state and
action of the previous quadruple. The observations o ∈ O are
sampled from the observation function Z, while the reward
r = R(s, a) is generated by the simulation process. Each
episode corresponds to a path in T . Details on how the
episodes are sampled are given in Section 3.1.

Prepared using sagej.cls

4 Journal Title XX(X)

Key to MLPP is the adoption of the MLMC concept:
While MLPP uses a single lookahead-tree T to represent
the policy, episodes are sampled using multiple levels of
approximations to the transition function. Note therefore,
similar to other tree-based POMDP solvers, MLPP uses
a single policy and builds a single belief tree, but the
computation resources to estimate the Q-value functions
is reduced via multilevel approximations of the forward
simulations.

Suppose T is the transition function of the POMDP prob-
lem. MLPP first defines a sequence of increasingly accurate
approximations to the transition function T0, T1, ..., TL with
TL = T , and uses the less accurate but cheaper transition
functions for the majority of the episode samples, to approx-
imate the Q-value function fast. Note that to ensure asymp-
totic convergence of MLPP, we slightly modify MLMC such
that L is finite and TL is the most refined level MLPP
samples from.

Let Vk(e) be a sample of the expected total discounted
reward of executing the action a of the k-th quadruple of
episode e from a node h of depth k and continuing optimally
afterwards. MLPP approximates Q(h, a) according to:

Q̂(h, a) = Q̂
(0)
0 (h, a) +

L∑
l=1

(Q̂
(l)
l (h, a)− Q̂(l)

l−1(h, a))

=
1

N0(h, a)

N0(h,a)∑
i=1

Vk(e
(0,i)
0)

+

L∑
l=1

1

Nl(h, a)

Nl(h,a)∑
i=1

(Vk(e
(l,i)
l)− Vk(e

(l,i)
l−1))

(3)

where an episode el on level l is sampled using Tl,
and Nl(h, a) is the number of episode samples for the l-
th difference term that start from h0, pass through h and
execute a from h. The superscript l in Q̂(l)

l (h, a) indicates
that the estimators for the Q-value difference terms are
independent on each level. Details on how the Vk(h, ·) values
are computed are given in Section 3.1. Similar to eq.(2), the
key here is that even though we draw independent samples
on each level, the episode samples for the value differences
Vk(e

(l,i)
l)− Vk(e

(l,i)
l−1) are correlated. The question is, how

do we correlate the sampled episodes?
We adopt the concepts of determinization Somani et al.

(2013) and common random numbers Owen (2013), a
popular variance reduction technique: To sample states and
observations for an episodes on level l, we use a deterministic
simulative model, i.e. a function fl : S ×A× [0, 1] 7→ S ×
O such that, given a random variable ψ uniformly distributed
in [0, 1], (s′, o) = fl(s, a, ψ) is distributed according to
Tl(s, a, s

′)O(s′, a, o). For an initial state s0 ∼ bt and a
sequence of actions, the states and observations of an episode
on level l are then deterministically generated from fl
using a sequence Ψ = (ψ0, ψ1, ...) of iid. random numbers.
Now, to sample a correlated episode on level l − 1, we
use the same initial state s0, the same sequence of actions
and the same random sample Ψ used for the episode on
level l, but generate next states and observations from the
model fl−1 corresponding to Tl−1, such that for a given

...

...

(a)

...

...

(b)

Figure 1. This figure illustrates a partial search tree T for a
POMDP problem with two actions a1 and a2 and two
observations o1 and o2, and the episode sampling process of
MLPP. The circles represent histories, whereas the edges
represent actions and observations. The root ht of the tree
represents the current history. In the first stage (a), MLPP
samples an episode (shown as a red curve) starting from ht,
using the coarsest approximation T0 to the transition function. In
the second stage (b), MLPP samples a pair of correlated
episodes (shown as two green curves) on level l and l − 1.
These two stages are repeated until the planning time for the
current step is over.

s and a, (s′, o) = fl−1(s, a, ψ) is distributed according to
Tl−1(s, a, s′)O(s′, a, o). Using the same initial state, action
sequence and random sample Ψ results in two closely
correlated episodes, reducing the variance of Vk(e

(l,i)
l)−

Vk(e
(l,i)
l−1).

To incorporate the above sampling strategy into the
construction of T , MLPP computes the estimator eq.(3) in
two subsequent stages: In the first stage, MLPP samples
episodes using the coarsest approximation T0 to the
transition function to compute the first term in eq.(3). In the
second stage, MLPP samples correlated pairs of episodes
to compute the value difference terms in eq.(3). These two
stages are detailed in the next two subsections and illustrated
in Figure 1. To sample correlated pairs of episodes, MLPP
first selects a level l and l − 1 according to a level selection
strategy. In this paper we consider two strategies to select the
levels: A default strategy that samples a level l according to

Prepared using sagej.cls

Hoerger et al. 5

a fixed probability distribution over the levels, and a cost-
aware adaptive hybrid sampling (AHS) strategy that adapts
the distribution over the levels according to their ”utility”.
Both strategies are detailed in Section 3.3. For the remainder
of the paper, we will refer to MLPP that uses the first strategy
as MLPP-Default and MLPP that uses the second strategy
as MLPP-AHS.

An overview of MLPP-Default and MLPP-AHS is shown
in Algorithm 1 and Algorithm 2 respectively. For both
variants of MLPP, we start by initializing T , containing
the empty history h0 as the root, and setting the current
belief to be the initial belief (line 1-3 in Algorithm 1).
Then, in each planning loop iteration (line 10-14) we first
sample an episode using T0 (line 11), followed by sampling
two correlated episodes (line 13). Once the planning time
for the current step is over, MLPP executes the action that
satisfies arg maxa∈A Q̂(h0, a). Based on the executed action
a and perceived observation o, we update the belief using
a SIR particle filter Arulampalam et al. (2002) (line 18)
and continue planning from the updated history h0ao. Note
that to get a good approximation of the next belief, the
particle filter always uses the original transition function to
draw samples from the transition-prior distribution. Since
the focus of this paper is to reduce the computational cost
of planning, which becomes prohibitively expensive when
computing a single forward simulation is costly, we only
apply the multi level approximation to planning and not to
belief updates during execution.

The process then repeats until a maximum number of steps
is reached, or the robot enters a terminal state (we assume
that we know when the robot enters a terminal state).

Algorithm 1 MLPP-Default
1: T = initializeTree()
2: b = b0
3: h = Root of T
4: terminal = False
5: t = 1
6: for k = 1 to L do . Initialization for level selection
7: Set probability of level k to pk = 2−k/

∑L
j=1 2−j

8: end for
9: while terminal is False and t < tmax do

10: while planning time not over do
11: (e0,Ψ) = SAMPLEEPISODE(T , b, h, ∅, 0) .

Algorithm 3
12: BACKUPEPISODE(T , e0)
13: SAMPLECORRELATEDEPISODES(T , b, h, e0,

[p1, · · · , pL]) . Algorithm 4
14: end while
15: a = get best action in T from h
16: terminal = Execute a
17: o = get observation
18: b = τ(b, a, o)
19: h = hao
20: t = t+ 1
21: end while

3.1 Sampling the episodes using T0

To sample an episode using T0, starting from the current
history h, we first sample a state from the current belief

Algorithm 2 MLPP-AHS
1: T = initializeTree()
2: b = b0
3: h = Root of T
4: terminal = False
5: t = 1
6: while terminal is False and t < tmax do
7: for k = 1 to L do . Initialization for level selection
8: Set weight of level k to wk = 1
9: Set cost of level k to ck = 0

10: Set probability of level k to pk = 1
L

11: end for
12: while planning time not over do
13: (e0,Ψ) = SAMPLEEPISODE(T , b, h, ∅, 0) .

Algorithm 3
14: BACKUPEPISODE(T , e0)
15: (l,∆v) = SAMPLECORRELATEDEPISODES(T , b,

h, e0, [p1, · · · , pL]) . Algorithm 4
16: wl = wl exp(ρ∆v/Lp̌l(Rmax −Rmin)) . eq.(9)
17: cl = updateCostEstimate(l) . eq.(7)
18: for k = 1 to L do
19: p̌k = (1− ρ) wk(t)∑L

j=1 wj(t)
+ ρ 1

L

20: pk = p̌k/ck∑L
j=1 p̌j/cj

. eq.(10)

21: end for
22: end while
23: a = get best action in T from h
24: terminal = Execute a
25: o = get observation
26: b = τ(b, a, o)
27: h = hao
28: t = t+ 1
29: end while

which will then correspond to the state of the first quadruple
of the episode (line 2 in Algorithm 3). To sample a next
state and observation, we first need to select an action from
h (line 8). The action-selection strategy is similar to the
strategy used in POMCP and ABT. Consider the set of
actionsA′(h) ⊆ A that have already been selected from h. If
A′(h) = A, i.e. all actions have been selected from h at least
once, we formulate the problem of which action to select as a
Multi-Arm-Bandit problem (MAB) Sutton and Barto (2012).

MABs are a class of reinforcement learning problems
where an agent has to select a sequence of actions to
maximise the total reward, but the rewards of selecting
actions are not known in advance. One of the most successful
algorithms to solve MAB problems is Upper Confidence
Bounds1 (UCB1) Auer et al. (2002). UCB1 selects an action

according to a = arg maxa∈A

(
Q̂(h, a) + C

√
log(N0(h))
N0(h,a)

)
,

where N0(h) is the number of episodes that were sampled
using T0 that pass through h, N0(h, a) is the number of
episodes that were sampled using T0, pass through h and
select action a from h and C is an exploration constant. In
case there are actions that haven’t been selected from h,
we use a rollout strategy that selects one of these actions
uniformly at random.

We then sample a random number ψ ∼ [0, 1] (line 16)
and, based on ψ and the selected action, generate a next
state and observation (line 17) from the model f0 using

Prepared using sagej.cls

6 Journal Title XX(X)

Algorithm 3 SAMPLEEPISODE(Search tree T , Belief b,
History node h, Coarse episode e0, level l)

1: e = init episode
2: s = sample a state from b
3: Ψ = init random number sequence
4: unvisitedAction = False
5: i = 0
6: while unvisitedAction is False and s not terminal do
7: if l is 0 then
8: (a, unvisitedAction) = UCB1(h)
9: else

10: a = e0[i].a
11: if a is ∅ then
12: unvisitedAction = True
13: break
14: end if
15: end if
16: ψ ∼ [0, 1]
17: (s′, o) = fl(s, a, ψ) . Generate (s′, o) such that

(s′, o) ∼ Tl(s, a, s′)Z(s′, a, o)
18: r = R(s, a)
19: insert (s, a, o, r) to e and ψ to Ψ
20: s = s′

21: h = child node of h via edge (a, o). If no such child
exists, create one

22: end while
23: r = 0
24: if unvisitedAction is True then
25: r = calculateHeuristic(s, h)
26: end if
27: insert (s,−,−, r) to e
28: return (e,Ψ)

T0, an immediate reward (line 18) and add the quadruple
to the episode. Additionally we set h to the child node
that is connected to h via the selected action and sampled
observation. If this child node doesn’t exist yet, we add it
to T (line 21). Note that selecting a previously unselected
action always results in a new node. To get a good estimate
of Q̂(0)

0 (h, a) for a newly selected action, MLPP computes a
problem dependent heuristic estimate (line 25) in its rollout
strategy using the last state of the episode. Computing a
heuristic estimate for Q̂(0)

0 (h, a) helps MLPP to quickly
focus its search on more promising parts of T .

Once we have sampled the episode, we backup the
expected discounted reward of the episode all the way back
to the current history (line 12 in Algorithm 1) to update
the Q̂-values along the selected action sequence. Unlike
POMCP Silver and Veness (2010), both versions of MLPP
use stochastic Bellman backups, rather than Monte Carlo
backups. In particular, suppose h is the history node the
i-th episode e(0,i)

0 reached after k steps, ak the action of
the k-th quadruple of the episode (i.e. the action that was
executed from h) and ok the observation that was perceived
after executing ak from h. To update the first term on the
right-hand side of eq.(3), we compute Vk(e0) according to

Vk(e
(0,i)
0) = rk + γ max

a′∈A
Q̂

(0)
0 (h′, a′) (4)

Algorithm 4 SAMPLECORRELATEDEPISODES(Search tree
T , Belief b, History node h, Coarse episode e0, [p1, · · · , pL])

1: l = Sample l proportional to pl
2: (el,Ψ) = SAMPLEEPISODE(T , b, h, e0, l)
3: el−1 = init episode
4: s = el[1].s . State of the first quadruple of el
5: for i = 1 to |hl| do
6: a = el[i].a . Action of the i-th quadruple of el
7: (s′, o) = fl−1(s, a,Ψ[i]) . s′ is generated according

to Tl−1

8: r = R(s, a)
9: insert (s, a, o, r) to el−1

10: s = s′

11: h = child node of h via edge (a, o). If no such child
exists, create one

12: if s′ is terminal then
13: break
14: end if
15: end for
16: r = 0
17: if i is |el| then
18: r = calculateHeuristic(s, h)
19: end if
20: insert (s,−,−, r) to el−1

21: ∆v = backupRewardDifference(T , el, el−1) . ∆v is
the absolute change in the estimated value function of the
current history (eq.(8))

22: return (l,∆v)

where rk is the immediate reward of the k-th quadruple
of the episode, h′ = hakok is the child node of h reached
by the episode and Q̂(0)

0 (h′, a′) is the (updated) estimate of
Q(h′, a′) on the coarsest level.

3.2 Sampling the correlated episodes
Once MLPP has sampled an episode using the coarsest
approximation to T , it samples two correlated episodes (line
13 in Algorithm 1), via Algorithm 4. To do this, we first have
to select the level l (and corresponding coarse level l − 1)
for which the correlated episodes are sampled on (line 1 in
Algorithm 4). The level selection strategies used by MLPP-
Default and MLPP-AHS are discussed in detail in the next
subsection.

Based on the selected level l, we first sample an episode el
using the finer transition function Tl (line 2). Sampling this
episode is similar to the coarsest level, with some notable
differences in the action-selection strategy: Since the episode
we sampled previously on the coarsest level 0 results in an
update of the estimators Q̂(0)

0 along the selected sequence
of actions, our aim is to update the estimators Q̂ along this
action sequence. Hence, we use the same action sequence for
the episode on level l that was used for the episode on level
0 (line 10 in Algorithm 3). Note however that sampling an
initial state from the current belief and generating subsequent
states and observations from the model fl is independent
of the coarsest episode. Furthermore, note that even though
we use the same action sequence that was selected for the
episode on the coarsest level, the sequence of histories visited
by el may be different due to different observation sequences.

Prepared using sagej.cls

Hoerger et al. 7

As a consequence, we might end up in a history node that
hasn’t been visited on the coarsest level before. If this is
the case, we stop the sampling process for el (line 11-14 in
Algorithm 3).

After we have sampled an episode el on level l, we
sample a correlated episode el−1 on level l − 1 (line 4-
20 in Algorithm 4). To do this, we use the model fl−1

corresponding to Tl−1 to generate states and observations,
but use the same initial state (line 4), the same action
sequence (line 6) and the same random number sequence
(line 7) that was used for the episode el. After we have
obtained two correlated episodes on level l and l − 1, we
backpropagate the discounted reward difference between
the two episodes along the action sequence all the way to
the current history (line 21), to update the estimated Q-
value difference between level l and l − 1, i.e. Q̂(l)

l (h, a)−
Q̂

(l)
l−1(h, a) for each action in the sequence. Similarly to

eq.(4), we use stochastic Bellman backups to update the Q-
value estimates on level l and l − 1. Note that, similarly as
above, the sequence of history nodes visited by el and el−1

may be different due to different sequences of observations.
Additionally, el−1 might terminate earlier than el. If this is
the case, we only update the Q-value difference estimates
and visitation counts along the sequence of action-edges that
is common for both episodes (there is always at least one
common action edge, which is the outgoing action of the
current history). Furthermore, note that since we only update
the Q-value estimates and the statistics along the sequence
of common action-edges, we always use the same number
of episodes on level l and l − 1 to update the l-th Q-value
difference term on the right-hand side of eq.(3).

The actual Q-value estimates Q̂(h, a) along the sequence
of common action-edges are then updated according to

Q̂(h, a) = Q̂
(0)
0 (h, a)

+

L∑
l=1

ωl(h, a)
(
Q̂

(l)
l (h, a)− Q̂(l)

l−1(h, a)
) (5)

where ωl(h, a) is a weighting function that will be
discussed below.

During the early stages of planning, when only a
few discounted reward differences have been sampled,
the estimators Q̂(l)

l (h, a)− Q̂(l)
l−1(h, a) might have a large

variance, causing it to ”overcorrect” the policy. This is
particularly relevant for problems with discontinuous reward
functions, where small variations between two episodes
can lead to large differences regarding their respective
total discounted rewards. For instance, in motion planning
problems, a small change in a collision-free state trajectory
of an episode might result in a trajectory that collides with an
obstacle, thereby increasing the variance of the Q̂(l)

l (h, a)−
Q̂

(l)
l−1(h, a) estimators. The problem of such discontinuous

output functions and their negative effect on the variance
of MLMC estimators was already studied in Giles (2015),
where the authors proposed several strategies to address this
problem, that typically rely on some form of smoothing of
the output function.

In this paper, we use a different approach: We use a
weighting function ωl defined as

ωl(h, a) =

(
1 +

V̂ [Ql(h, a)−Ql−1(h, a)]

Nl

)−1

(6)

where V̂ [·] is an estimate of the variance of the Q-value
differenceQl(h, a)−Ql−1(h, a), obtained from the episode
samples, and Nl is the number of samples used to estimate
Ql(h, a)−Ql−1(h, a). Intuitively, eq.(6) prevents the
estimator Q̂(l)

l (h, a)− Q̂(l)
l−1(h, a) from affecting Q̂(h, a)

too much in case its sample variance is initially large.
However, as the number of episode samples on level l and
l − 1 increases, ωl(h, a) converges towards 1, hence the limit
of eq.(5) is the actual MLMC-estimator of Q̂(h, a) defined in
eq.(3).

3.3 Selecting a Level for the Correlated
Episodes

To select a level l for the correlated episodes, we consider
two level-selection strategies in this paper. The first strategy
used by MLPP-Default samples a level proportional to 2−l,
with l ≥ 1. This strategy is motivated by the idea that as we
increase the level, fewer and fewer samples are needed to get
a good estimate of the expected value difference. The idea
of randomizing the level is motivated by Rhee and Glynn
(2012). This strategy of selecting the levels is simple and
captures the fact that we need fewer and fewer samples as
the level increases to get a good estimate of the Q-value
differences in eq.(3).

However, the above strategy does not consider the cost of
sampling episodes on different levels, nor does it consider
the contribution that each Q-value difference term has to
the value function V (h) of the current history h. For
many problems, the difference Q̂(l)

l (h, a)− Q̂(l)
l−1(h, a) has

a negligible contribution to V (h) as we increase l, but
sampling episodes becomes significantly more expensive.
Furthermore, the benefit and cost of sampling on different
levels depend on the estimated value function so far, which
depends on the current history.

Therefore, to balance the benefit and cost, while being
adaptive to the current history, we propose a level sampling
strategy used by MLPP-AHS that is inspired by the Adaptive
Hybrid Sampling (AHS) strategy proposed in Hsu et al.
(2005) which is a cost-aware Multi Arm Bandit method for
selecting samplers in the context of PRM-planning. This
strategy allows our level sampling strategy to be adaptive
with respect to both the cost of sampling episodes at level
l, as well as to the contribution the Q-value difference terms
on level l have to V (h).

Given the current history h, we maintain a weight wl for
each level l ≥ 1 that reflects the past utility of a level l in
terms of its contribution to V (h) and its cost of sampling
episodes on level l. At the start of each planning step, we set
wl = 1 for each 1 ≤ l ≤ L (line 8 in Algorithm 2).

Suppose cl is an estimate of the computational cost of
sampling two correlated episodes on level l and l − 1. This
cost can vary greatly depending on the current history h
from where the episodes are sampled from as well as on
the length of the sampled episodes. For instance, in motion

Prepared using sagej.cls

8 Journal Title XX(X)

planning problems where a robot has to reach a goal area
in the environment, episodes tend to become shorter as the
robot gets closer to the goal and are consequently cheaper to
sample. Therefore it is, in general, difficult to obtain a good
estimate of the computational cost of sampling episodes on
level l and l − 1 a-priori. Thus, we resort to estimating cl
on-line for the current history as the average cost (in terms
of CPU time) of sampling two correlated episodes on level l
and l − 1 via

cl =
1

Nl

Nl∑
i=1

c(e
(i)
l) + c(e

(i)
l−1) (7)

where c(·) is the cost of a sampled episode, starting from
the current history. The cost terms cl are hereby re-initialized
to 0 at every planning step (line 9 in Algorithm 2), i.e.
after the robot has executed and action and perceived an
observation, which enables us to adapt them to the current
history.

Now, suppose at planning loop iteration t level l was
chosen and two correlated episodes were sampled on level
l and l − 1. This results in a change of the estimated value
function V̂ (h) for the current history h. Let V̂t(h) and
V̂t−1(h) be the estimated value functions of h at the current
and previous planning loop iterations. The absolute change
in the estimated value function, i.e.

∆V =
∣∣∣V̂t(h)− V̂t−1(h)

∣∣∣ (8)

provides us with a means to estimate the effect the levels
l and l − 1 have on V (h). Using ∆V we then update the
weight of the selected level l according to

wl(t+ 1) = wl(t) exp(ρ∆V /(Lp̌l(Rmax −Rmin))) (9)

where wl(t) is the current weight of level l, Rmax =
maxs∈S,a∈AR(s, a) and Rmin = mins∈S,a∈AR(s, a) are
the maximum and minimum immediate rewards respectively,
ρ ∈ (0, 1) is an exploration constant and p̌l = (1−
ρ) wl(t)∑L

j=1 wj(t)
+ ρ 1

L is a cost-independent probability of

selecting level l. In other words, the current weight wl(t)
of the chosen level l is scaled exponentially with ∆V . The
term (Rmax −Rmin) in the denominator on the right-hand
side of eq.(9) ensures that the weights are upper-bounded by
1. The above method is motivated by Kurniawati and Yadav
(2013), where a similar strategy was used to estimate how
different rollout heuristics improve the value function at the
root node.

To take the cost of sampling two correlated episodes on
level l and l − 1 into account, we update the probability of
selecting level l (initially, each level l has equal probability
of being selected) according to

pl =
p̌l/cl∑L
j=1 p̌j/cj

(10)

This level sampling strategy enables MLPP to quickly
focus on levels that have a large effect on the value function
V (h) of the current history h, while simultaneously taking
the episode sampling cost into account. As we will see
in Section 4, this has a sizeable effect on the overall
performance of MLPP.

4 Experiments and Results
To evaluate MLPP-Default and MLPP-AHS, we tested them
on two motion-planning problems under uncertainty with
expensive non-linear transition dynamics and two problems
with long-planning horizons. The scenarios are shown in
Figure 2 and described below.

4.1 Problem scenarios with expensive
transition dynamics

4.1.1 4DOF-Factory A torque-controlled manipulator
with 4 revolute joints must move from an initial state to a
state where the end-effector lies inside a goal region (colored
green in Figure 2(a)), without colliding with any of the
obstacles. The state space is the joint product of joint-angles
and joint-velocities. The control inputs are the joint-torques.
To keep the action space small, the action space is set to be
the maximum and minimum possible joint torque, resulting
in 16 discrete actions. We assume the input torque at each
joint is affected by zero-mean additive Gaussian noise.
The dynamics of the manipulators are defined using the
well-known Newton-Euler formalism Spong et al. (2006).
We assume that each torque input is applied for ∆t = 0.1s.
The robot has two sensors: One measures the position of
the end-effector inside the robot’s workspace, while the
other measures the joint velocities. Both measurements are
disturbed by zero-mean additive Gaussian noise. The initial
state is known exactly, which is when the joint angles and
velocities are zero.

The robot enters a terminal state and receives a reward
of 1,000 upon reaching the goal. To encourage the robot to
reach the goal area quickly, it receives a small penalty of -
1 for every other action. Collision causes the robot to enter
a terminal state and receive a penalty of -500. The discount
factor is 0.98 and the maximum number of planning steps is
limited to 50.

4.1.2 KukaOffice The scenario is very similar to the
4DOF-Factory scenario. However, the robot and envi-
ronment (illustrated in Figure 2(b)) are different. The robot
is a Kuka iiwa with 7 revolute joints. We set the POMDP
model to be similar to that of the 4DOF-Factory scenario,
but of course expanded to handle 7DOFs. For instance, the
action space remains the maximum and minimum possible
joint torque for each joint. However, due to the increase in
DOFs, the POMDP model of this scenario has 128 discrete
actions. The sensors and errors in both actions and sensing
are the same as the 4DOF-Factory scenario. Similar to
the above scenario, we assume each torque input is applied
for ∆t = 0.1s. The initial state in this scenario is also similar
to the above scenario: The initial joint-velocities are all zero
and almost all joint-angles are zero too, except for the second
joint, for which the initial joint angle is −1.5rad.

4.2 Problem scenarios with long
planning-horizons

4.2.1 CarNavigation A nonholonomic car-like robot
drives on a flat xy-plane inside a 3D environment (shown
in Figure 2(c)), populated by obstacles. The robot must
drive from a known start state to a position inside the
goal region (marked as a green sphere) without colliding

Prepared using sagej.cls

Hoerger et al. 9

(a) (b) (c) (d)

Figure 2. The test scenarios used throughout the experiments. (a) 4DOF-Factory (b) KukaOffice (c) CarNavigation (d)
MovoGrasping

with the obstacles. The state of the robot is a 4D-vector
consisting of the position of the robot on the xy-plane,
its orientation θ around the z-axis, and the forward
velocity υ. The control input is a 2D-vector consisting
of the acceleration α and the steering-wheel angle
φt. The robot’s dynamics is subject to control noise
vt = (α̃t, φ̃t) ∼ N(0,Σv). The transition model of the robot
is defined as st+1 = [xt + ∆tυt cos θt; yt + ∆tυt sin θt;

θt + ∆t tan(φt + φ̃t)/0.11; υt + ∆t(αt + α̃t)]
T , where

∆t = 0.05s is a fixed parameter that represents the duration
of a time-step and the value 0.11 is the distance between the
front and rear axles of the wheels. The robot is equipped
with two sensors: The first one is a localization sensor
that receives a signal from one of two beacons located
in the environment (blue squares in Figure 2(c)), with
probability proportional to the inverse euclidean distance to
the beacons. The second sensor is a velocity sensor mounted
on the car. With these two sensors the observation model
is ot =

[
((xt − x̂)2 + (yt − ŷ)2 + 1)−1, vt

]T
+ wt, where

(x̂, ŷ) is the location of the beacon the robot receives a signal
from, vt is the velocity and wt is an error vector drawn from
a zero-mean multivariate Gaussian distribution. The robot
starts from a state where it is located in the lower-left corner
of the map. The robot receives a penalty of -500 when it
collides with an obstacle, a reward of 10,000 when reaching
the goal area (in both cases it enters a terminal state) and
a small penalty of -1 for every step. The discount factor is
0.99 and we allow a maximum of 500 planning steps.

For this problem sampling from the transition function
is cheap, thanks to the closed-form transition dynamics.
However, the robot must perform a large number of steps
(around 200) to reach the goal area from its initial state.
Additionally, due to the non-linear transition and observation
dynamics and the obstacles in the environment, the beliefs
are often non-Gaussian or even multimodal, as shown in
Figure 3(a) and (b).

4.2.2 MovoGrasp A 6-DOF Movo manipulator equipped
with a gripper must grasp a cylindrical object placed on
a table in front of the robot while avoiding collisions
with the table and the static obstacles on the table. The
environment is shown in Figure 2(d). The state space of
the manipulator is defined as S = Θ×GripperStates×
GraspStates× Φobj , where Θ = (−3.14rad, 3.14rad)6

are the joint angles of the arm, GripperStates =

(a) (b)

Figure 3. This Figure shows two beliefs (represented as
orange particles, where each orange rectangle represents a
particle) in the CarNavigation scenario. Due to the
non-linear transition and observation dynamics and the
obstacles in the environment, the beliefs can become
non-Gaussian and multimodal.

{gripperOpen, gripperClosed} indicates whether the grip-
per is open or closed, GraspStates = {grasp, noGrasp}
indicates whether the robot is grasping the object or not,
and Φobj ⊆ R6 is the set of poses of the object in the
robot’s workspace. The action space is defined asA = Aθ ×
{openGripper, closeGripper} where Aθ ⊆ R6 is the set
of fixed joint angle increments/decrements for each joint,
and openGripper, closeGripper are actions to open/close
the gripper, resulting in 66 actions. When executing a joint
angle increment/decrement action θ̂, the joint angles evolve
linearly according to θt+1 = θt + ∆tθ̂ + vt, where ∆t =
0.25 and vt is a multivariate zero-mean Gaussian control
error. We assume that the openGripper and closeGripper
actions are deterministic.

Here the robot has access to two sensors: A joint-
encoder that measures the joint angles of the robot and a
grasp detector that indicates whether the robot grasps the
object or not. For the joint-encoder, we assume that the
encoder readings are disturbed by a small additive error
drawn from a uniform distribution [−0.05, 0.05]. For the
grasp detector we assume that we get a correct reading
90% of the time. The robot starts from an initial belief
where the gripper is open, the joint angles of the robot are
(0.8,−0.2, 0.8,−0.03, 0.0, 0.7)rad and the object is placed
on the table such that the x and y positions of the object are
uniformly distributed according to [0.86m± 0.01m, 0.2±
0.01m]. When the robot collides with the environment or

Prepared using sagej.cls

10 Journal Title XX(X)

the object, it enters a terminal state and receives a penalty
of -250. In case the robot closes the gripper but doesn’t
grasp the object, it receives a penalty of -100. Additionally,
when the gripper is closed and a grasp is not established,
the robot receives a penalty of -700 if it doesn’t execute
the openGripper action. Each motion also incurs a small
penalty of -3. When the robot successfully grasps the object,
it receives a reward of 1,750 and enters a terminal state. The
discount factor is 0.99 and we allow a maximum of 200
planning steps.

Similarly to the CarNavigation problem, the difficulty
for this problem is the large number of steps that are required
for the robot to complete its task (around 100). Additionally,
the robot must act strategically when approaching the object
to ensure a successful grasp.

4.3 Experimental setup
For our experiments we compare MLPP-Default and MLPP-
AHS with two state-of-the-art on-line POMDP solvers
ABT Kurniawati and Yadav (2013) and POMCP Silver
and Veness (2010). DESPOT Somani et al. (2013) is not
used as a comparator because for the type of problems
we try to address, DESPOT’s strategy of expanding each
belief with every action branch (via forward simulation)
is uncompetitive. For example, for the 4DOF-Factory
problem, expanding a single belief takes, on average,
∼14.4s using K = 50 scenarios (50 is a tenth of what it
commonly used Somani et al. (2013)), which is already
much more than the time for a single planning step in our
experiments (1s). Similarly, for the long planning-horizon
problem MovoGrasp, DESPOT must expand all 66 actions
using K scenarios from every belief it encounters. In our
tests we found that, given K = 50 scenarios and 1s of
planning time/step, DESPOT was unable to expand the
belief tree beyond 2 steps in the MovoGrasp problem,
whereas for the same planning time/step, MLPP typically
has a lookahead of around 5-7 steps in this problem. In the
CarNavigation scenario, for 1s of planning time/step,
MLPP achieved a lookahead of around 12-15 steps, whereas
the lookahead of DESPOT was limited to a maximum of 4
steps, using K = 50 scenarios and 1s of planning time/step.
As a result, DESPOT was unable to solve the problem, since
its lookahead was insufficient to discover a strategy that
drives the car from the lower-left part of the map to the
passage near the upper-left part of the map.

Note that all tested solvers rely on heuristic estimates
of the action values in their rollout strategy. For a fair
comparison, we use the same heuristic function for all
solvers, where we use methods from motion-planning,
assuming the problem is deterministic. Additionally, all
solvers tested here use a set of particles to represent
the current belief that is updated using a SIR particle
filter Arulampalam et al. (2002) after the robot has executed
an action and perceived an observation. This particle filter
always uses the original transition functions to draw samples
from the transition-prior distribution for each solver and
problem scenario.

For the 4DOF-Factory and KukaOffice problems,
we use the ODE physics engine Smith (2001) to simulate
the transition dynamics. The levels l used by MLPP-
Default and MLPP-AHS in these scenarios are associated

with the “discretization” (i.e., δt in seconds) used by
the numerical integrator of ODE. In particular, for level
l, we set δt(l) = C1 · 2−C2l. For the CarNavigation
and MovoGrasp problems, since the dynamics of these
problems are simple, MLPP associates the levels l to the
time-step, i.e., ∆t(l) = C1 · 2−C2l. The exact parameters
(i.e., C1, C2, and the number of levels L) were determined
via systematic preliminary trials. As a result of these trials,
we set the parameters used by MLPP for 4DOF-Factory
and KukaOffice to be C1=0.0128, C2=1, L=7, for
CarNavigation to be C1=0.4, C2=1, L=3, and for
MovoGrasping to be C1=1, C2=0.5, L=4. Note that
for each problem, we assume that the transition function
TL corresponding to the most refined level L represents
the actual transition function T of the problem. For the
exploration factor ρ used by the adaptive level sampling
strategy of MLPP-AHS, we set ρ = 0.1 throughout the
experiments.

The purpose of our experiments is four-fold: First is to
test whether our particular choice for the multiple levels
of approximation to the transition functions results in a
reduction of the variance of the Q-value difference terms in
eq.(5). This ensures that, as we increase the level, fewer and
fewer episode samples are required to accurately estimate
the difference terms. To do this, we ran MLPP-Default on
each problem scenario for 10 runs with a planning time
of 20s per step. Then, at each step, after planning time is
over, we use the computed policy π and sample 50,000
additional episodes from the current history h on each
level l to compute the variance V[Ql(h, a)] and 50,000
correlated episodes on each level l to compute the variance
V[Ql(h, a)−Ql−1(h, a)], where a is the action performed
from h according to π(h). Taking the average of these
variances over all steps and all simulation runs then gives
us an indication on how the variances of the Q-value
difference terms in eq.(5) behave as we increase the level of
approximation to the transition function.

Second is to compare MLPP-Default and MLPP-AHS
with ABT and POMCP. For this purpose, we used a fixed
planning time per step for each solver, where we used 1s for
the 4DOF-Factory, CarNavigation and MovoGrasp
problems, and 5s for the KukaOffice problem. For each
problem we tested ABT and POMCP using different levels
of approximations to T for planning, to see whether using
a single approximation to T helps to speed-up computing
a good policy, compared to MLPP-Default and MLPP-AHS
which use all levels of approximations of T for planning.

Third is to understand how transition dynamics with
varying costs affect the performance of MLPP-Default
and MLPP-AHS compared to ABT and POMCP. For this
experiment we tested all solvers on the 4DOF-Factory
and KukaOffice problems where we modify the transition
dynamics of the problems to become progressively cheaper.
To do this, we set the integration step-size δt of the numerical
integrator of ODE to increasingly large values, where we
use δt1 = 0.0004s, δt2 = 0.0016s and δt3 = 0.0064s. In
our experiments we found that a step size larger than δt =
0.0128s causes the numerical solver of ODE to become
unstable, which resulted in chaotic behaviour of the robots
in both the 4DOF-Factory and KukaOffice scenarios.
For this reason, we cap the largest step size to δt3 = 0.0064s

Prepared using sagej.cls

Hoerger et al. 11

0 1 2 3 4 5 6 7
0

200
400
600
800

1000
1200
1400
1600
1800

Level of approximation of T

V
ar

ia
nc

e

This is a name

This is a much longer

0 1 2 3 4 5 6 7
0

200
400
600
800

1000
1200
1400
1600
1800

Level of approximation of T

V
ar

ia
nc

e

This is a name

This is a much longer

0 1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

Level of approximation of T

V
ar

ia
nc

e

This is a name

This is a much longer

(a) 4DOF-Factory (b) KukaOffice

0 1 2 3 4 5 6 7
0

200
400
600
800

1000
1200
1400
1600
1800

Level of approximation of T

V
ar

ia
nc

e

This is a name

This is a much longer

0 1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

Level of approximation of T

V
ar

ia
nc

e

This is a name

This is a much longer

0 1 2 3
0E+00

1E+04

2E+04

3E+04

4E+04

5E+04

Level of approximation of T

V
ar

ia
nc

e

This is a name

This is a much longer

0 1 2 3 4 5 6 7
0

200
400
600
800

1000
1200
1400
1600
1800

Level of approximation of T

V
ar

ia
nc

e

This is a name

This is a much longer

0 1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

Level of approximation of T

V
ar

ia
nc

e

This is a name

This is a much longer

0 1 2 3
0E+00

1E+04

2E+04

3E+04

4E+04

5E+04

Level of approximation of T

V
ar

ia
nc

e

This is a name

This is a much longer

0 1 2 3 4
0E+00

1E+04

2E+04

3E+04

4E+04

5E+04

6E+04

7E+04

Level of approximation of T

V
ar

ia
nc

e

This is a name

This is a much longer

(c) CarNavigation (d) MovoGrasp

Figure 4. Average variance of Ql (solid blue line) and Ql −Ql−1 (dashed red line) for the problem scenarios (a) 4DOF-Factory,
(b) KukaOffice, (c) CarNavigation and (d) MovoGrasp. The x-axis represents the level l (larger levels correspond to finer
approximations to the transition function) and the y-axis represents the variance.

in this experiment. Similarly to above, we associate the levels
used by MLPP with the integration step size of ODE and
set, for level l, δt(l) = C1 · 2−C2l, where we set C2 = 5/L
for δt1, C2 = 3/L for δt2 and C2 = 1/L for δt3 with C1 =
0.0128 and L = 7 as above. Similarly to the second set of
experiments, we use a fixed planning time per step of 1s for
the 4DOF-Factory problem and 5s for the KukaOffice
problem for all solvers.

Last, we investigated if and how fast MLPP-Default and
MLPP-AHS converge to a near-optimal policy compared
to ABT and POMCP, when the latter two solvers use the
original transition function for planning. To do this, we
used multiple increasing planning times per step in the
4DOF-Factory problem, starting from 1s to 20s per step.

All four test scenarios and the solvers were implemented
in C++ within the OPPT framework Hoerger et al.
(2018), ensuring that all solvers use the same problem
implementation. For ABT we used the implementation
provided by the authors Klimenko et al. (2014). For POMCP
we used the implementation provided by https://github.
com/AdaCompNUS/despot. All simulations were run single-
threaded on an Intel Xeon Silver 4110 CPU with 2.1GHz and
128GB of memory.

The results of our experiments are discussed in the next
subsection.

4.4 Results
4.4.1 Variances of Ql −Ql−1 Figure 4(a)-(d) shows the
average variances of Ql and Ql −Ql−1 in all four problem
scenarios. It is clear that in all scenarios, the variance of the
Q-value differences decreases significantly as we increase
the level l, indicating that we indeed require fewer and fewer
episode samples as we increase l. Note that the rate of
decrease depends on the particular choice of the sequence
of approximate transition functions. Multiple sequences can
be possible for a particular problem, but preference should be
given to the sequence for which the variance of the Q-value
difference decreases fastest.

4.4.2 Average total discounted rewards Figure 5(a)-(d)
shows the average total discounted rewards achieved by
MLPP-Default, MLPP-AHS, ABT and POMCP in all four
test scenarios. The average is taken over 500 simulation runs
per solver and problem scenario. The results indicate that, for
ABT and POMCP, using a single coarse approximation to T
for planning can help in computing a better policy, compared
to using the original transition function. However, different
regions of the belief space are likely to require different level
of approximations. For instance in 4DOF-Factory, when
the states in the support of the belief place the robot in the
relatively open area, coarse levels of approximation suffice
but, when they are in the cluttered area, higher accuracy

Prepared using sagej.cls

https://github.com/AdaCompNUS/despot
https://github.com/AdaCompNUS/despot

12 Journal Title XX(X)

0 1 2 3 4 5 6 7

-400

-200

0

200

400

600

800

MLPP-Default
MLPP-AHS
POMCP
ABT

Level of approximation of T

A
vg

. t
ot

al
 d

is
co

un
te

d
re

w
ar

d

0 1 2 3 4 5 6 7

-400

-200

0

200

400

600

800

MLPP-Default
MLPP-AHS
POMCP
ABT

Level of approximation of T

A
vg

. t
ot

al
 d

is
co

un
te

d
re

w
ar

d

0 1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

800

900

MLPP-Default
MLPP-AHS
POMCP
ABT

Level of approximation of T

A
vg

. t
ot

al
 d

is
co

un
te

d
re

w
ar

d

(a) 4DOF-Factory (b) KukaOffice

0 1 2 3 4 5 6 7

-400

-200

0

200

400

600

800

MLPP-Default
MLPP-AHS
POMCP
ABT

Level of approximation of T

A
vg

. t
ot

al
 d

is
co

un
te

d
re

w
ar

d

0 1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

800

900

MLPP-Default
MLPP-AHS
POMCP
ABT

Level of approximation of T

A
vg

. t
ot

al
 d

is
co

un
te

d
re

w
ar

d

0 1 2 3 4

-300

-200

-100

0

100

200

300

400

500

600

MLPP-Default
MLPP-AHS
POMCP
ABT

Level of approximation of T

A
vg

. t
ot

al
 d

is
co

un
te

d
re

w
ar

d

0 1 2 3 4 5 6 7

-400

-200

0

200

400

600

800

MLPP-Default
MLPP-AHS
POMCP
ABT

Level of approximation of T

A
vg

. t
ot

al
 d

is
co

un
te

d
re

w
ar

d

0 1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

800

900

MLPP-Default
MLPP-AHS
POMCP
ABT

Level of approximation of T

A
vg

. t
ot

al
 d

is
co

un
te

d
re

w
ar

d

0 1 2 3 4

-300

-200

-100

0

100

200

300

400

500

600

MLPP-Default
MLPP-AHS
POMCP
ABT

Level of approximation of T

A
vg

. t
ot

al
 d

is
co

un
te

d
re

w
ar

d

0 1 2 3 4

-1000

-800

-600

-400

-200

0

200

400

600

800

MLPP-Default
MLPP-AHS
POMCP
ABT

Level of approximation of T

A
vg

. t
ot

al
 d

is
co

un
te

d
re

w
ar

d

(c) CarNavigation (d) MovoGrasp

Figure 5. Average total discounted reward of MLPP-Default, MLPP-AHS, ABT and POMCP in the (a) 4DOF-Factory, (b)
KukaOffice, (c) CarNavigation and (d) MovoGrasp scenarios. The x-axis represents the level of approximation to the
transition function used for planning (larger levels correspond to finer approximations). Note that both MLPP-Default and
MLPP-AHS use all levels for planning (hence the horizontal lines), whereas ABT and POMCP use only a single level as indicated
by the x-axis. For each scenario, the largest level of approximation (i.e. the rightmost value on the x-axis) is equal to the original
transition function. The y-axis represents the average total discounted reward. The average is taken over 500 simulation runs per
solver and problem scenario. Vertical bars are the 95% confidence intervals.

is required. Unlike ABT and POMCP, MLPP-Default and
MLPP-AHS cover multiple levels of approximations and
are able to quickly reduce errors in the estimates of the
action values caused by coarse approximations. The lack
of coverage causes difficulties for ABT and POMCP in
the MovoGrasping as well, where a high accuracy is
neccessary for grasping.

Comparing MLPP-Default with MLPP-AHS, we see
that MLPP-AHS generally outperforms MLPP-Default,
particularly in the KukaOffice and CarNavigation
scenarios. This is not surprising. MLPP-Default selects
levels of approximations to the transition function according
to a fixed distribution that is not necessarily optimal in terms
of the cost of sampling episodes on different levels and their
effects on the policy. For instance, in the KukaOffice
scenario, the cost of sampling correlated episodes increases
drastically on the finer levels (in our experiments, the cost
of sampling two correlated episodes on level l and l − 1

approximately doubles as we increase l), whereas the Q-
value differences in eq.(3) become significantly smaller
(by a factor of up to 10x) as we increase the level. On
the other hand, in the CarNavigation scenario, the
cost of sampling correlated episodes remains approximately
constant across the different levels, while the Q-value
differences decrease by a factor of roughly 2x as we increase
the level. In both cases MLPP-AHS quickly adapts its level
selection strategy to the episode sampling cost on different
levels and the importance of the different levels in terms
of their contributions to the value function. Subsequently,
MLPP-AHS is able to find good policies more efficiently
than MLPP-Default.

4.4.3 Transition dynamics with varying costs Figure 6
shows the average total discounted rewards achieved by
all solvers in the 4DOF-Factory and KukaOffice
scenarios as the transition dynamics of the POMDP problems
become progressively cheaper (in terms of sampling cost).
Unsurprisingly, the performance of ABT and POMCP

Prepared using sagej.cls

Hoerger et al. 13

0.0001 0.0004 0.0016 0.0064

-400

-200

0

200

400

600

800

MLPP-Default
MLPP-AHS
POMCP
ABT

Step-size

A
vg

. t
ot

al
 d

is
co

un
te

d
re

w
ar

d

0.0001 0.0004 0.0016 0.0064
0

100

200

300

400

500

600

700

800

900

MLPP-Default
MLPP-AHS
POMCP
ABT

Step-size

A
vg

. t
ot

al
 d

is
co

un
te

d
re

w
ar

d

(a) 4DOF-Factory (b) KukaOffice

Figure 6. Average total discounted rewards for MLPP-Default, MLPP-AHS, ABT and POMCP in the (a) 4DOF-Factory and (b)
KukaOffice scenarios with transition dynamics of varying cost. The x-axis represents the step-size of the numerical solver used
to simulate the transition dynamics, where larger values correspond to cheaper transition dynamics. The y-axis represents the
average total discounted reward. The average is taken over 500 simulation runs for each solver and transition function. The vertical
bars indicate the 95% confidence intervals.

increases drastically as the cost of the transition dynamics
decreases. For the cheapest transition dynamics (i.e. for the
transition dynamics that uses an integration step size of δt =
0.0064s for the numerical integrator of ODE), ABT matches
the performance of both MLPP-Default and MLPP-AHS
in the 4DOF-Factory scenario and slightly outperforms
both solvers in the KukaOffice scenario. Interestingly,
the performance of MLPP-Default and MLPP-AHS in both
scenarios is much less affected by the cost of the original
transition dynamics. This result indicates that both MLPP-
Default and MLPP-AHS are effective in computing an
approximate optimal policy, even if the original transition
dynamics are expensive.

A slight difference in performance between MLPP-
Default and MLPP-AHS occurs in the KukaOffice
scenario when the original transition dynamics has a small
step-size, which is the most expensive transition dynamics in
this set of experiments. This result indicates that an adaptive
level selection strategy that balances the cost and benefit will
be more advantageous for problems with more expensive
transition dynamics.

4.4.4 Increasing planning times Figure 7 shows the
average total discounted rewards achieved by each solver in
the 4DOF-Factory scenario as the planning time per step
increases. The results indicate that both MLPP-Default and
MLPP-AHS converge to a good policy significantly faster
than ABT and POMCP. ABT requires 15s/step to generate
a policy whose quality is similar to the policy generated by
MLPP-Default and MLPP-AHS in 2.5s/step, while POMCP
is unable to reach a similar level of quality, even with a
planning time of 20s/step (in our experiments it took roughly
5 minutes of planning time/step for POMCP to converge to a
near-optimal policy).

1 1.5 2 2.5 3 3.5 5 10 15 20

-400

-200

0

200

400

600

800

MLPP-Default
MLPP-AHS
ABT
POMCP

Planning time per step in seconds

A
vg

. t
ot

al
 d

is
co

un
te

d
re

w
ar

d

Figure 7. Average total discounted rewards for MLPP-Default,
MLPP-AHS, ABT and POMCP in the 4DOF-Factory scenario
using increasing planning times per step. The x-axis indicates
the planning time per step (in seconds), whereas the y-axis
represents the average total discounted reward. The average is
taken over 500 simulation runs for each planning time and
solver. The vertical bars are the 95% confidence intervals.

5 Discussion on the convergence of
MLPP-Default and MLPP-AHS

The above experimental results indicate that both versions of
MLPP can converge to a good policy faster than state of the
art solvers. Moreover, asymptotic convergence to the optimal
solution can be guaranteed for finite horizon POMDPs with
horizon d under the assumption below. This result can
be expanded to infinite horizons in a similar way many
convergence results for finite horizon tree-based POMDP
solvers are expanded to infinite horizons (e.g., Silver and
Veness (2010)).

Suppose we have an action sequence (a1, a2, a3, ..., aK)
and an initial state s0, sampled from the current belief.
Applying the action sequence to s0 results in a trajectory
(s0, a1, s1, o1, a2, s2, o2, ...) which is distributed according

Prepared using sagej.cls

14 Journal Title XX(X)

to
∏K
i=1 T (si−1, ai, si)Z(si, ai, oi). Now, suppose we have

a sequence of approximations T0, T1, ...TL to the transition
function, with TL = T .

Assumption 1. Given a POMDP P , with transition
function T and a sequence of approximations
T0, T1, ...TL to the transition function with TL = T ,
then for any initial state s0 ∈ S, any action sequence
(a1, a2, a3, ..., aK) and any observation sequence
(o1, o2, o3, ..., oK),

∏K
i=1 T (si−1, ai, si)Z(si, ai, oi) > 0

implies
∏K
i=1 Tl(si−1, ai, si)Z(si, ai, oi) > 0 for

0 ≤ l ≤ L.

Intuitively, under this assumption, any node in T that can
be reached by episodes that are sampled using the original
transition function T can also be reached by episodes that
are sampled using Tl for 0 ≤ l ≤ L. It is true that these levels
may not be chosen equally often. In fact, the unequal number
of times we use the different levels is indeed the key to the
performance of Multi Level Monte Carlo techniques Giles
(2008). However, in the limit, each level will be chosen
infinitely often because each level will always have a non-
zero probability of being selected, regardless of whether we
use MLPP-Default or MLPP-AHS.

To show asymptotic convergence of MLPP-Default and
MLPP-AHS towards the optimal policy for a finite-horizon
POMDP with horizon d, we have to show that under
Assumption 1:

(A) At any node hd−1 ∈ T of depth d− 1 (we denote a
node that is k steps away from the root of T as hk),
the estimator in eq.(3) converges asymptotically to the
true Q-value for any a ∈ A

(B) The convergence of the Q-values at the nodes of depth
d− 1 implies asymptotic convergence of the Q-values
at the root node.

To show that (A) holds, let’s suppose h0 is the current
history (i.e. the root node of T), b(s, h0) is the current
belief, and hd ∈ T is a leaf-node with associated action-
observation sequence hd, starting from h0, that can be
reached by episodes sampled using the original transition
function. Furthermore, let hd−1 ∈ T be the parent node of
hd and bl(s, hd−1) be the belief that follows from the current
belief and hd−1, under the transition function Tl. Since the
Q-values at hd−1 only depend on the immediate rewards, for
any a ∈ A, the estimator eq.(3) at hd−1 becomes

Q̂(hd−1, a) =
1

N0(hd−1, a)

N0(hd−1,a)∑
i=1

R(s
(0,i)
d−1,0, a)

+

L∑
l=1

1

Nl(hd−1, a)

Nl(hd−1,a)∑
i=1

R(s
(l,i)
d−1,l, a)−R(s

(l,i)
d−1,l−1, a)

(11)

where s(l,i)
d−1,l ∼ bl(s, hd−1).

Recall from Section 3 that we use UCB1 as the action
selection strategy when sampling episodes using the coarsest
approximation to the transition function T0, whereas for the
correlated episodes on level l and l − 1, we follow the action

sequence that was selected at the coarsest level. An important
property of UCB1 is the fact that at any node h ∈ T , each
action will be selected infinitely often in the limit. Thus, any
action sequence, including the one in hd−1, will be selected
infinitely often at the coarsest level and followed on any other
level l > 0. Since we assume that hd−1 can be reached by
episodes sampled using the original transition function (i.e.
the transition function on level L), it follows by Assumption
1 that hd−1 will be reached by episodes sampled using any
level of approximation to the transition function infinitely
often in the limit. Thus, the estimator eq.(11) converges
according to

lim
N0(hd−1,a),...,NL(hd−1,a)→∞

Q̂(hd−1, a)

=

∫
s∈S

b0(s, hd−1)R(s, a)ds

+

L∑
l=1

∫
s∈S

bl(s, hd−1)R(s, a)− bl−1(s, hd−1)R(s, a)ds

= Q0(hd−1, a) +

L∑
l=1

(Ql(hd−1, a)−Ql−1(hd−1, a))

= QL(hd−1, a) = Q(hd−1, a) (12)

which guarantees (A).
To show (B), i.e. the asymptotic convergence of the Q-

value estimates at the root of T towards the true values,
recall from Section 3 that after sampling an episode using
the coarsest approximation to the transition function, we
update the estimates Q̂(0)

0 along the selected action sequence
using stochastic Bellman backups (see eq.(4)). Similarly,
after sampling two correlated episodes on level l and l − 1,
we use stochastic Bellman backups to update Q̂(l)

l and Q̂(l)
l−1

along the common action sequence of both episodes.
For brevity, we only discuss the convergence of Q̂(0)

0 , but
the result also applies to each Q̂(l)

l in the difference terms
of the right hand side of eq.(3). Subsequently, utilising the
results of MLMC Giles (2015), given enough time and the
convergence of each term in eq.(3), the estimated Q-value Q̂
on the left-hand side of eq.(3) converges to the correct Q-
value. In the following, we discuss the convergence of the
mentioned terms.

Recall from Section 3.1 that after sampling an episode
on level 0, for each node h ∈ T visited by the episode, the
estimate Q̂(0)

0 (h, a) (with a ∈ A being the action that was
executed at h) is updated by computing eq.(4) and updating
the first sum on the right-hand side of eq.(3). Thus, after
sampling the i-th episode on the coarsest level that executes
a at h, this update rule can be written as

Q̂
(0)
0,i (h, a) = Q̂

(0)
0,i−1(h, a)

+ αi(h, a)

(
r(i) + γ max

a′∈A
Q̂

(0)
0,i (hao

(i), a′)− Q̂(0)
0,i−1(h, a)

)
(13)

with o(i) and r(i) being the sampled observation and the
immediate reward of the episode after executing a at h and
αi(h, a) = i−1. Q̂(0)

0,i−1(h, a) and Q̂(0)
0,i (h, a) refer to the Q-

value estimates of a at h on the coarsest level before and after

Prepared using sagej.cls

Hoerger et al. 15

sampling the episode. Note that eq.(13) is akin to the update-
rule used byQ-learning Watkins and Dayan (1992), where in
our case, the update is performed in the history space, instead
of the state space. It is known that the update rule in eq.(13) is
a contraction Bertsekas and Tsitsiklis (1996). The monotonic
improvement provided by the contraction property ensures
that at each node h, the error

∣∣∣Q̂(0)
0,i (h, a)−Q(0)

0 (h, a)
∣∣∣

(with Q(0)
0 (h, a) being expected total discounted reward of

executing a from h and continuing optimally afterwards,
under the transition function T0) converges to zero for i→
∞ and that this error is upper-bounded by the errors at the
child nodes of the action edge ha.

This, together with (A), ensures the asymptotic conver-
gence of MLPP-Default and MLPP-AHS towards the opti-
mal policy.

Assumption 1 is quite strong and might be too restrictive
for some problems, since it requires that any observation
that has a non-zero probability of being sampled from
Z(s′, a, o) given a subsequent state s′ ∈ S sampled from
T (s, a, s′) also has a non-zero probability of being sampled,
given a subsequent sampled from Tl(s, a, s

′), for 0 ≤ l ≤
L. Nevertheless, problems whose transition and observation
functions for all state–action pairs are represented as
distributions with infinite support (e.g., Gaussian) satisfy the
assumption above.

6 Conclusion

Despite the rapid progress in on-line POMDP planning,
computing robust policies for systems with complex
dynamics and long planning-horizons remains challenging.
Today’s fastest on-line solvers rely on a large number of
forward simulations and standard Monte Carlo methods to
estimate the expected outcome of action sequences. They
rely on the assumption that each forward simulation can
be computed almost instantaneously. This assumption is
generally false for problems with complex dynamics.

To alleviate the above shortcomings, we propose MLPP,
an on-line POMDP solver that extends Multilevel Monte
Carlo to POMDP planning. MLPP samples episodes using
multiple levels of approximation to the transition dynamics
and computes an approximation to the action-values using
a Multilevel Monte Carlo estimator. This strategy enables
MLPP to significantly speed-up the planning process while
retaining correctness of the action-value estimates. We have
presented two variants of MLPP, MLPP-Default and MLPP-
AHS and successfully tested them on four robotic planning
problems under partial observability that involve expensive
transition dynamics and long planning-horizons. In all
four problems, MLPP-Default and MLPP-AHS substantially
outperform ABT and POMCP, two of the fastest on-line
solvers, which shows the effectiveness of the proposed
method.

Future work abounds: While this paper focuses on
extending the Multilevel Monte Carlo concept to on-
line POMDP planning, related Monte Carlo methods
that use multiple levels of approximations to models
that are expensive to evaluate exist Peherstorfer et al.
(2018); Peherstorfer (2019). Some of these methods do
not require correlated samples on different levels, which

could potentially lead to simpler and more efficient on-line
POMDP solvers.

Additionally, while we focus on POMDP problems with
expensive transition dynamics, our MLMC-based method
could also be applied to complex observation functions
by defining a sequence of approximations with increasing
accuracy, and hence sampling cost, for the observation
function. In many robotics problems, obtaining observations
often consists of processing raw sensor data, such as high-
resolution images, which can be expensive when many
different observation sequences have to be sampled during
planning. Applying our method to complex observation
functions could be an interesting avenue for future work.

Acknowledgements

This work is partially funded by the ANU Futures Scheme
QCE20102

References

Agha-Mohammadi AA, Chakravorty S and Amato NM (2011)
Firm: Feedback controller-based information-state roadmap-
a framework for motion planning under uncertainty. In:
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on. IEEE, pp. 4284–4291.

Anderson DF and Higham DJ (2012) Multilevel monte carlo
for continuous time markov chains, with applications in
biochemical kinetics. Multiscale Modeling & Simulation 10(1):
146–179.

Araya M, Buffet O, Thomas V and Charpillet F (2010)
A pomdp extension with belief-dependent rewards.
In: Lafferty J, Williams C, Shawe-Taylor J, Zemel R
and Culotta A (eds.) Advances in Neural Information
Processing Systems, volume 23. Curran Associates,
Inc. URL https://proceedings.neurips.cc/paper/2010/file/
68053af2923e00204c3ca7c6a3150cf7-Paper.pdf.

Arulampalam MS, Maskell S, Gordon N and Clapp T (2002) A
tutorial on particle filters for online nonlinear/non-gaussian
bayesian tracking. IEEE Transactions on signal processing
50(2): 174–188.

Auer P, Cesa-Bianchi N and Fischer P (2002) Finite-time analysis
of the multiarmed bandit problem. Machine Learning 47(2-3):
235–256.

Bai H and Hsu D (2012) Unmanned aircraft collision avoidance
using continuous-state pomdps. Robotics: Science and Systems
VII 1: 1–8.

Bai H, Hsu D and Lee WS (2014) Integrated perception and
planning in the continuous space: A pomdp approach. The
International Journal of Robotics Research 33(9): 1288–1302.

Bertsekas DP and Tsitsiklis JN (1996) Neuro-dynamic program-
ming. Belmont, MA: Athena Scientific.

Bierig C and Chernov A (2016) Approximation of probability
density functions by the multilevel monte carlo maximum
entropy method. Journal of Computational Physics 314: 661–
681.

Cai P, Luo Y, Hsu D and Lee WS (2021) Hyp-despot: A hybrid
parallel algorithm for online planning under uncertainty. The
International Journal of Robotics Research 40(2-3): 558–573.

Couëtoux A, Hoock JB, Sokolovska N, Teytaud O and
Bonnard N (2011) Continuous upper confidence trees.

Prepared using sagej.cls

https://proceedings.neurips.cc/paper/2010/file/68053af2923e00204c3ca7c6a3150cf7-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/68053af2923e00204c3ca7c6a3150cf7-Paper.pdf

16 Journal Title XX(X)

In: International Conference on Learning and Intelligent
Optimization. Springer, pp. 433–445.

Fischer J and Tas ÖS (2020) Information particle filter tree: An
online algorithm for pomdps with belief-based rewards on
continuous domains. In: International Conference on Machine
Learning. PMLR, pp. 3177–3187.

Garg NP, Hsu D and Lee WS (2019) Despot-alpha: Online pomdp
planning with large state and observation spaces. In: Proc. of
Robotics: Science and Systems.

Giles MB (2008) Multilevel monte carlo path simulation.
Operations Research 56(3): 607–617.

Giles MB (2015) Multilevel monte carlo methods. Acta Numerica
24: 259–328.

Heinrich S (2001) Multilevel monte carlo methods. In: Margenov
S, Waśniewski J and Yalamov P (eds.) Large-Scale Scientific
Computing. Berlin, Heidelberg: Springer Berlin Heidelberg.
ISBN 978-3-540-45346-8, pp. 58–67.

Hoerger M and Kurniawati H (2021) An on-line pomdp solver
for continuous observation spaces. In: Proc. IEEE/RSJ Int.
Conference on Robotics and Automation (ICRA). IEEE.

Hoerger M, Kurniawati H, Bandyopadhyay T and Elfes A (2020)
Linearization in motion planning under uncertainty. In:
Algorithmic Foundations of Robotics XII. Springer, Cham, pp.
272–287.

Hoerger M, Kurniawati H and Elfes A (2018) A software
framework for planning under partial observability. In: Proc.
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, pp. 1–9.

Hoerger M, Kurniawati H and Elfes A (2019a) Multilevel monte-
carlo for solving pomdps online. In: Proc. International
Symposium on Robotics Research (ISRR).

Hoerger M, Song J, Kurniawati H and Elfes A (2019b) Pomdp-
based candy server: Lessons learned from a seven day demo.
In: Proc. AAAI International Conference on Autonomous
Planning and Scheduling (ICAPS). AAAI, pp. 698–706.

Horowitz M and Burdick J (2013) Interactive non-prehensile
manipulation for grasping via pomdps. In: Robotics and
Automation (ICRA), 2013 IEEE International Conference on.
IEEE, pp. 3257–3264.

Hsiao K, Kaelbling LP and Lozano-Perez T (2007) Grasping
pomdps. In: Robotics and Automation, 2007 IEEE
International Conference on. IEEE, pp. 4685–4692.

Hsu D, Sanchez-Ante G and Zheng Sun (2005) Hybrid prm
sampling with a cost-sensitive adaptive strategy. In:
Proceedings of the 2005 IEEE International Conference on
Robotics and Automation. pp. 3874–3880.

Klimenko D, Song J and Kurniawati H (2014) Tapir: a software
toolkit for approximating and adapting pomdp solutions online.
In: Proceedings of the Australasian Conference on Robotics
and Automation.

Kocsis L and Szepesvári C (2006) Bandit based monte-carlo
planning. In: European conference on machine learning.
Springer, pp. 282–293.

Kurniawati H (2022) Partially observable markov decision
processes and robotics. Annual Review of Control, Robotics,
and Autonomous Systems To appear.

Kurniawati H, Du Y, Hsu D and Lee WS (2011) Motion planning
under uncertainty for robotic tasks with long time horizons. The
International Journal of Robotics Research 30(3): 308–323.

Kurniawati H, Hsu D and Lee WS (2008) Sarsop: Efficient point-
based pomdp planning by approximating optimally reachable
belief spaces. In: In Proc. Robotics: Science and Systems.

Kurniawati H and Yadav V (2013) An online pomdp solver for
uncertainty planning in dynamic environment. In: Proc. Int.
Symp. on Robotics Research.

Lim MH, Tomlin CJ and Sunberg ZN (2020) Voronoi progressive
widening: Efficient online solvers for continuous state, action,
and observation pomdps. arXiv preprint arXiv:2012.10140 .

Lindquist A (1973) On feedback control of linear stochastic
systems. SIAM Journal on Control 11(2): 323–343.

Luo Y, Bai H, Hsu D and Lee WS (2019) Importance sampling for
online planning under uncertainty. The International Journal
of Robotics Research 38(2-3): 162–181.

Mern J, Yildiz A, Sunberg Z, Mukerji T and Kochenderfer
MJ (2021) Bayesian optimized monte carlo planning. In:
Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35. pp. 11880–11887.

Mihaylova L, Lefebvre T, Bruyninckx H, Gadeyne K and
De Schutter J (2002) A comparison of decision making
criteria and optimization methods for active robotic sensing.
In: International Conference on Numerical Methods and
Applications. Springer, pp. 316–324.

Owen AB (2013) Monte Carlo theory, methods and examples.
Papadimitriou CH and Tsitsiklis JN (1987) The complexity of

markov decision processes. Mathematics of operations
research 12(3): 441–450.

Peherstorfer B (2019) Multifidelity monte carlo estimation
with adaptive low-fidelity models. SIAM/ASA Journal on
Uncertainty Quantification 7(2): 579–603.

Peherstorfer B, Willcox K and Gunzburger M (2018) Survey of
multifidelity methods in uncertainty propagation, inference,
and optimization. SIAM Review 60(3): 550–591.

Pineau J, Gordon G and Thrun S (2003) Point-based Value Iteration:
An anytime algorithm for POMDPs.

Rhee Ch and Glynn PW (2012) A new approach to unbiased
estimation for sde’s. In: Proceedings of the Winter Simulation
Conference. Winter Simulation Conference, p. 17.

Rubinstein RY and Kroese DP (2013) The cross-entropy method: a
unified approach to combinatorial optimization, Monte-Carlo
simulation and machine learning. Springer Science & Business
Media.

Seiler KM, Kurniawati H and Singh SP (2015) An online and
approximate solver for pomdps with continuous action space.
In: Robotics and Automation (ICRA), 2015 IEEE International
Conference on. IEEE, pp. 2290–2297.

Silver D and Veness J (2010) Monte-carlo planning in large
POMDPs. In: Advances in neural information processing
systems. pp. 2164–2172.

Smith R (2001) Open dynamics engine. http://www.ode.org/.
Smith T and Simmons R (2005) Point-based POMDP algorithms:

Improved analysis and implementation.
Somani A, Ye N, Hsu D and Lee WS (2013) Despot: Online

pomdp planning with regularization. In: Advances in neural
information processing systems. pp. 1772–1780.

Sondik EJ (1971) The Optimal Control of Partially Observable
Markov Decision Processes. PhD Thesis, Stanford, California.

Spong MW, Hutchinson S and Vidyasagar M (2006) Robot
Modeling and Control, volume 3. Wiley New York.

Prepared using sagej.cls

http://www.ode.org/

Hoerger et al. 17

Sun W, Patil S and Alterovitz R (2015) High-frequency replanning
under uncertainty using parallel sampling-based motion
planning. IEEE Transactions on Robotics 31(1): 104–116.

Sunberg ZN and Kochenderfer MJ (2018) Online algorithms for
pomdps with continuous state, action, and observation spaces.
In: Twenty-Eighth International Conference on Automated
Planning and Scheduling.

Sutton R and Barto A (2012) Reinforcement Learning: An
Introduction. MIT Press.

Van Den Berg J, Abbeel P and Goldberg K (2011) Lqg-mp:
Optimized path planning for robots with motion uncertainty
and imperfect state information. The International Journal of
Robotics Research 30(7): 895–913.

Van Den Berg J, Patil S and Alterovitz R (2012) Motion planning
under uncertainty using iterative local optimization in belief
space. The International Journal of Robotics Research 31(11):
1263–1278.

Wandzel A, Oh Y, Fishman M, Kumar N, Wong LL and Tellex S
(2019) Multi-object search using object-oriented pomdps. In:
2019 International Conference on Robotics and Automation
(ICRA). pp. 7194–7200.

Wang E, Kurniawati H and Kroese DP (2018) An on-line planner
for pomdps with large discrete action space: A quantile-based
approach. In: ICAPS. AAAI Press, pp. 273–277.

Watkins CJ and Dayan P (1992) Q-learning. Machine learning 8(3-
4): 279–292.

Prepared using sagej.cls

	1 Introduction
	2 Background
	2.1 Partially Observable Markov Decision Process (POMDP)
	2.2 Related POMDP Solvers
	2.3 Multilevel Monte Carlo

	3 Multilevel POMDP Planner (MLPP)
	3.1 Sampling the episodes using T0
	3.2 Sampling the correlated episodes
	3.3 Selecting a Level for the Correlated Episodes

	4 Experiments and Results
	4.1 Problem scenarios with expensive transition dynamics
	4.1.1 4DOF-Factory
	4.1.2 KukaOffice

	4.2 Problem scenarios with long planning-horizons
	4.2.1 CarNavigation
	4.2.2 MovoGrasp

	4.3 Experimental setup
	4.4 Results
	4.4.1 Variances of Ql - Ql-1
	4.4.2 Average total discounted rewards
	4.4.3 Transition dynamics with varying costs
	4.4.4 Increasing planning times

	5 Discussion on the convergence of MLPP-Default and MLPP-AHS
	6 Conclusion

