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Abstract

End-to-end learning for planning is a promising approach for finding good robot strategies in situations where the
state transition, observation, and reward functions are initially unknown. Many neural network architectures for this
approach have shown positive results. Across these networks, seemingly small components have been used repeatedly
in different architectures, which means improving the efficiency of these components has great potential to improve
the overall performance of the network. This paper aims to improve one such component: The forward propagation
module. In particular, we propose Locally-Connected Interrelated Network (LCI-Net) —a novel type of locally connected
layer with unshared but interrelated weights— to improve the efficiency of learning stochastic transition models for
planning and propagating information via the learned transition models. LCI-Net is a small differentiable neural network
module that can be plugged into various existing architectures. For evaluation purposes, we apply LCI-Net to VIN
and QMDP-Net. VIN is an end-to-end neural network for solving Markov Decision Processes (MDPs) whose transition
and reward functions are initially unknown, while QMDP-Net is its counterpart for the Partially Observable Markov
Decision Process (POMDP) whose transition, observation, and reward functions are initially unknown. Simulation tests
on benchmark problems involving 2D and 3D navigation and grasping indicate promising results: Changing only the
forward propagation module alone with LCI-Net improves VIN’s and QMDP-Net generalization capability by more than

3x and 10x, respectively.
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Introduction

Stochastic planning requires stochastic models of the state
transition, observation, and objective functions. However,
such models are not always available, and attaining them can
be difficult, especially when the dynamics of both the robot
and the environment must be accounted for. To overcome
this difficulty, end-to-end deep learning based approaches
for combined planning and learning have been proposed
and have shown promising results. Many architectures
have been proposed Francois-Lavet et al. (2019); Gupta
et al. (2017); Karkus et al. (2017); Lisa Lee and Emilio
Parisotto and Devendra Singh Chaplot and Eric Xing and
Ruslan Salakhutdinov (2018); Oh et al. (2015, 2017); Tamar
et al. (2017); Wahlstrom et al. (2015). These different
architectures often share common components and some of
these components even appear repeatedly within a single
network. Such components are akin to “primitives” in
planning, and therefore, we hypothesise that improving the
efficiency of such components could substantially improve
the capability of neural-network based combined planning
and learning. This paper focuses on improving the efficiency
of one such component: The forward propagation module
— that is, the neural network component that propagates
information on the basis of learned stochastic models of the
state transition function.

A straightforward implementation of the forward propa-
gation module often requires many parameters to be learned.
Therefore, to reduce training time and data requirement,
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existing architectures simplify the models being learned.
One commonly used approach is to transform states to
abstract states and learn the transition models with respect to
these abstract states, rather than states (e.g., Francois-Lavet
et al. (2019); Oh et al. (2015); Wahlstrom et al. (2015)).
This is generally done via an auto-encoder: An encoder
simplifies the current state into an abstract state, predicts
the next abstract state via a fully connected layer, and then
decodes the subsequent abstract state back into the original
state. Transition from one abstract state to the next indeed
requires a much smaller number of parameters to be learned.
However, one needs to also learn the parameters for the
auto-encoder. Moreover, the auto-encoder needs to be deep
enough to generate a sufficiently small feature space, which
generally increases the number of parameters to be learned.
Other architectures learn a state transition function with
respect to the entire state space, but reduce the number of
parameters to be learned by exploiting the fact that state
transitions are generally local, and by assuming that they
depend only on actions, rather than state-action pairs (e.g.,
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Gupta et al. (2017); Karkus et al. (2017); Lisa Lee and Emilio
Parisotto and Devendra Singh Chaplot and Eric Xing and
Ruslan Salakhutdinov (2018); Oh et al. (2017); Tamar et al.
(2017)). This is done via weight sharing in a convolution
network, where the transition function for each action is
represented as a kernel, whose size is much smaller than
the size of the state space. This architecture substantially
reduces the number of parameters to be learned but, is more
constrained in its function representation.

To take the best of both worlds, in this paper, we propose
a forward propagation module, called Locally-Connected
Interrelated Network (LCI-Net). Key to LCI-Net is a novel
locally-connected network layer with indirectly interrelated
weights. It enables LCI-Net to exploit the locality property
present in most transition functions and applies the learned
transition probabilities to the original states, rather than
abstract states, while learning a transition function that
depends on pairs of abstract states and actions. LCI-Net is
differentiable and is designed for multi-task learning, in the
sense that LCI-Net learns a stochastic model of system’s
dynamics for a multitude of scenarios at once.

LCI-Net is a simple module that can be plugged into
various neural-network architectures that require information
propagation governed by learned transition functions, such as
model-based reinforcement learning and Bayesian filtering.
In this paper, we evaluate LCI-Net by applying it to the Value
Iteration Network (VIN) Tamar et al. (2017) and QMDP-
Net architectures. VIN is a neural network architecture
that finds policies for Markov Decision Processes (MDPs)
whose transition and reward functions are initially unknown
and are learned from data in an end-to-end fashion, while
QMDP-Net Karkus et al. (2017) is a counterpart of VIN for
Partially Observable Markov Decision Processes (POMDPs)
whose transition, observation, and reward functions are
initially unknown. Specifically, we use LCI-Net to replace
the Forward Propagation Module of VIN and QMDP-Net
respectively. For QMDP-Net, LCI-Net is applied to both
its planning and Bayesian filter modules. Since QMDP-
Net’s Bayesian filter is the End-to-End learnable Histogram
Filter (E2E-HF) Jonkowski and Brock (2017), our evaluation
applies LCI-Net to the E2E-HF architecture too. We
evaluate the performance of LCI-Net on various 2D and
3D navigation and grasping benchmarks, and evaluate the
results of learning on problems of the same class but with
much larger state spaces. Simulation results indicate that
replacing only the forward propagation component of VIN
and QMDP-Net with LCI-Net improves their generalization
capability by 3x and 10X, respectively.

LCI-Net was first presented in Collins and Kurniawati
(2020). In this work, we have expanded the explanation
and evaluation of LCI-Net to include extensive testing in 2
different neural network architectures for planning in MDPs
and POMDPs. The trend of the results is similar in both
cases.

Background and Related Work

Background

Although LCI-Net can be applied to various neural-network
architectures that require a forward propagation module,
to make the explanation concrete, in this paper, we focus
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on applying LCI-Net to compute good MDP and POMDP
policies when the underlying model is not known a priori.

Formally, an MDP Puterman (2014) is a decision-
making framework for problems with non-deterministic
action effects. It is described by a 5-tuple(S, A, T, R,~),
where S is the set of states and A is the set of actions. At
each step, an MDP agent is in some state s € S, takes an
action a € A, and moves from s to state s’ € S according to a
conditional probability distribution T'(s, a, s’) = P(s'|s, a),
called the transition probability. Prior to executing the action,
the agent does not know the exact effect of its action, but
once it performs the action, it can fully observe which state
it is in. After each step, the agent receives a reward R(s, a).
The solution to an MDP problem is then a mapping from
states to actions, called policy 7, that maximises the expected
total reward, i.e.,

V*(s) = max [R(s, a)+y Z T(s,a,sV*(s')| (1)

€
“ s'esS

J(s,a)

where - € (0,1) is a discount factor to ensure the
optimisation is well defined.

A POMDP Kaelbling et al. (1998); Sondik (1971) is the
partially observable version of an MDP. Similar to MDPs, in
POMDPs, the exact effects of actions are not known exactly
prior to execution. However, unlike MDPs, in POMDPs,
the states are only partially observable, and hence are never
known exactly.

Formally, a POMDP is described by a 7-tuple
(S,A,0,T,Z, R,v). In this paper, the context will make
it clear whether one refers to a POMDP or an MDP, and
therefore for simplicity, we use the same notation to describe
the overlapping components of POMDPs and MDPs —that
is, S refers to the set of states, A is the set of actions, T
refers to the transition probability T'(s, a,s’) = P(s'|s, a),
R refers to the reward the agent receives at the end of each
step, and ~ refers to the discount factor. Due to partial
observability, a POMDP definition has two additional
components: The set of observations, denoted as O, and the
observation function Z(s’, a,0) = P(o0|s’, a) that represents
uncertainty in perception.

At each step, the agent is in some hidden state s € S, takes
an action a € A, and moves from s to state s’ € S according
to a conditional probability distribution T'(s,a,s’) =
P(s'|s, a), called the transition probability. The current state
s’ is then partially revealed via an observation o drawn from a
conditional probability distribution Z(s’, a,0) = P(o|s’, a)
that represents uncertainty in sensing. After each step, the
agent receives a reward R(s,a), if it takes action a from
state s. Due to uncertainty in both the effects of actions
and observations perceived, a POMDP agent never knows its
exact state, and represents this uncertainty as distributions
over states, called beliefs, and denoted as b € B. The
solution to a POMDP problem is then a mapping from beliefs
to actions, called policy 7, that maximises the expected total
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reward, i.e.,

V) = max[ZR(s,a)b(s)+’y

>~ Plolb, a)V*(r(b.a,0))]

0€O

= max [Z R(s,a)b(s) + Z Z Z
ses

0€0 s'e€S ses
b(s)Z(s',a,0) T(s,0,5)V*(7(b, 0,0))] @)

Jint(b,a)

where 7(b, a, 0) is the belief after action a € A is applied to
b and observation o € O is perceived, computed as:

7(b,a,0)(s") =nZ(s, a,o) Z T(s,a,s")b(s) 3)

seS

bint(s")

where 7 is a normalisation factor.

‘When the transition, observation, and/or reward functions
are a priori unknown, one can compute an MDP or POMDP
policy while learning the model, which can be formulated as
an end-to-end reinforcement learning or imitation learning
problem. LCI-Net can be applied as the forward propagation
module, i.e., J(s,a), Jint(b,a), and b;,:(s) in eq. (1),
eq. (2), and eq. (3) respectively, in the mentioned learning
approaches. In this paper, we apply LCI-Net to imitation
learning.

Related Work

Recently, there has been a growing body of works that
apply deep learning through model-free approaches to solve
large scale MDPs and POMDPs when the model is not
fully known. The work in Hausknecht and Stone (2015),
for instance, implemented a variation of DQN Mnih et al.
(2015) which replaces the final fully connected layer with a
recurrent LSTM layer to solve partially observable variants
of Atari games. The work in Mirowski et al. (2016) applied
convolutional neural networks with multiple recurrent layers
for the task of navigating within a partially observable maze
environment. The learned policy is able to generalise to
different goal positions within the learned maze, but not to
previously unseen maze environments.

However, more recently, success has been achieved
with methods that embed specific computational structures
representing a model and algorithm within a neural network
and training the network end-to-end, a hybrid approach
which has the potential to combine the benefits of both
model-based and model-free methods. For instance, Tamar
et al. (2017) developed VIN, a differentiable approximation
of value iteration embedded within a convolutional neural
network to solve fully observable Markov Decision Process
(MDP) problems in discrete space. The work in van der Pol
et al. (2020) incorporate structures from group symmetries
to solving MDP using neural network, while Okada et al.
(2017) implemented a network with specific embedded
computational structures to address the problem of path
integral optimal control with continuous state and action
spaces. These works focus only on cases where the state is
fully observable.
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By combining the ideas in the above work with recent
work on embedding Bayesian filters in deep neural networks
Haarnoja et al. (2016); Jonkowski and Brock (2017);
Karkus et al. (2018), one can develop neural network
architectures that combine model-free learning and model-
based planning for POMDPs. For instance, Shankar et al.
(2016) implemented a network which implements an
approximate POMDP algorithm based on Qp;pp Littman
et al. (1995) by combining an embedded value iteration
module with an embedded Bayesian filter. Modules are
trained separately, with a focus on learning transition
and reward models over directly learning a policy. More
recently, Karkus et al. (2017) developed QMDP-Net, which
implements a Qy;pp approximate POMDP algorithm to
predict approximately optimal policies for tasks in a
parameterised domain of environments. Policies are learned
end-to-end, focusing on learning an “incorrect but useful”
model which learns to optimise policy performance over
model accuracy.

Recently, deep learning has been viewed as a new
programming paradigm, called differentiable programming,
where algorithms and data are implemented as differentiable
neural network blocks Olah (2019); Karkus et al. (2019).
Neural network “primitives”, such as a forward propagation
module, can be viewed as one of the programming blocks,
albeit one focused for stochastic planning. In this paper, we
focus on improving the efficiency of this particular module.

Note that in this paper, the neural network layer we
propose focuses only on a primitive computation, i.e.,
forward propagation. This primitive can then be plugged in
into multiple neural network modules for stochastic planning
where the transition dynamics need to be learned. This is
in contrast to neural network modules that aim to solve
the entire planning problem, such as VIN and QMDP-Net
for stochastic planning and MPNet Qureshi et al. (2019)
for deterministic motion planning. We are of the opinion
that optimising a primitive component alone is easier and
will enable multiple different neural network modules for
stochastic motion planning without a priori dynamic models
to reap major benefits.

In prior works Haarnoja et al. (2016); Jonkowski
and Brock (2017); Tamar et al. (2017); Shankar et al.
(2016); Karkus et al. (2017), forward propagation has
been accomplished via the use of convolutional layers, in
which weights in a shared convolution kernel represent the
probabilities of each possible relative change in position for
each available action. Here, the channels of the convolution
kernel represent available actions, while each position within
the kernel represents a relative change in position from
the previous state, with the centre position representing no
change. A single set of kernel weights is learned via end-
to-end learning, and applied universally to every state in the
state space.

This forward propagation structure necessitates the use
of a restricted transition model T'(a,ds), where ds is a
relative change in position within some local region of
the current state s, as opposed to the complete transition
model formulation 7'(s, a, s") introduced above. While this
method of forward propagation is efficient, in that it greatly
reduces the number of parameters required to be learned to
represent transition dynamics and allows information learned
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about dynamics in one state to generalise to other states,
it introduces the assumption that transition probabilities
are independent of the original state. This restricts the
expressiveness of the learned model, preventing key aspects
of the dynamics of many systems from being represented.

This paper introduces an alternative formulation of the
transition model and an accompanying module structure
which relaxes this assumption, enabling significantly greater
expressiveness while maintaining similar computational
complexity to this existing approach.

The problem of learning a transition dynamics model
in isolation has also been approached by a number of
works. Lever et al. (2014) use online linear regression to
transform states to an abstract feature space, building a
compact representation incrementally using greedy feature
selection to be used with a separate planning algorithm.
Moerland et al. (2017) use deep generative models based
on conditional variational inference to learn multi-modal
transition dynamics models to be used by a planning
algorithm. Sun et al. (2021) propose an algorithm for
learning a dynamics model for multi-task learning settings
based on transition templates, for use with a planning
algorithm. These techniques are limited to conventional
model-based learning in which learning and planning are
separated, and are not applicable to the problem of end-
to-end learning or the differentiable programming paradigm
which are addressed by this paper.

LCI-Net

LCI-Net is a forward propagation layer that can be embedded
into various neural network architectures that combine
planning and model learning, such as Francois-Lavet et al.
(2019); Gupta et al. (2017); Karkus et al. (2017); Lisa Lee
and Emilio Parisotto and Devendra Singh Chaplot and Eric
Xing and Ruslan Salakhutdinov (2018); Oh et al. (2017);
Tamar et al. (2017); Wahlstrom et al. (2015). Examples of
the forward propagation component are J(s,a) in eq. (1)
for MDPs, and J;,,+(b, a) in eq. (2) and b;,; in eq. (3) for
POMDPs. Before presenting the details of LCI-Net, we will
first describe the combined planning and learning problem.

Overview of the Problem and LCI-Net

Let us consider the problem of learning a near optimal
(PO)MDP policy, end-to-end, for acting in a parameterized
set of stochastic scenarios: We = {W(6)|0 € ©}, where ©
is the set of all possible parameter values. We use similar
notations to those used in Karkus et al. (2017); Tamar
et al. (2017). Each parameter 6 describes properties of the
scenarios such as obstacle geometry and materials, position
of static and dynamic obstacles, goal location, and initial
belief distribution for a given task and environment. The
problems of deciding how to act in the various scenarios in
We are defined as (PO)MDPs with a common state space .S,
action space A and observation space O but without a priori
known transition, action, and observation functions.

A recent approach to solve the above problem is by
using neural network to simultaneously learn the (PO)MDP
models and perform value iteration using the learned model
to compute the policy. In this paper, we focus on such a
combined learning and planning approach too. We assume
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the neural network for solving the above problem embeds an
internal model M (0) = (S, A, O, fr(.10), fz(.10), fr(.16)),
where S, A and O are the state space, actions space,
and observation space respectively, which are manually
specified, and constant across the set of tasks in the
task domain. The notations fr(.|6), fz(.|0), and fgr(.|0)
are the transition function, observation function, and
reward function, respectively, and are represented by sub-
networks which are trained end-to-end to maximise policy
performance. LCI-Net focuses on one of these sub-networks.

Specifically, LCI-Net is a forward propagation layer that
can be applied for a variety of purposes. For instance, to
compute J (s, a) in the value function computation of MDPs
(eq. (1)) and to compute J;,:(b,a) and b;,: in the value
function and belief update computations of POMDPs (eq. (2)
and eq. (3)).

LCI-Net learns and propagates information via the
transition function fr(.|0). It consists of two inter-
related structures. The first structure represents the internal
transition function, fr(.|0). Key in this structure is a
representation suitable for robust learning, in the sense that
the results of learning transfer across different tasks in
the task domain and generalise beyond the training set.
The second structure is designed to propagate information,
such as state-action values (for value update) and beliefs
(for belief update), through space over a single time
step, in accordance to the transition function. These two
structures are merged seamlessly within our proposed
locally-connected layer with indirectly interrelated weights.
Details of these two structures are described in the following
subsections, while the overall LCI-Net layer is illustrated in
Fig. 1,

Learning the Transition Probability Function

The transition function is parameterized by the current
state s € S, the action a € A, and the subsequent state
s’ € S. Therefore, a straightforward modelling of such a
function requires |S|?| A| parameters to be learned, resulting
in very large transition models for problems beyond trivial
size. To reduce this learning complexity without sacrificing
robustness, LCI-Net encodes known information about the
problem’s structure in the neural network representation of
the transition function.

To that end, LCI-Net approximates learning T'(s, a, s)
by learning 7'(s, a,ds), where s € D is a relative change
in state within a local region D around the state s. This
approximation is reasonable for many robotics problems
where the support of the transition function 7'(s,a,s’) is
bounded within a relatively small local region around s, or
the probability becomes very low outside of this small local
region. However, naive implementation of the mentioned
approximation requires learning parameters as many as
|D||S||Al|, where | D] is the size of the local region. Although
the number of parameters to be learned has reduced from the
original |S|?|A|, the size of S can be large.

To reduce the number learned parameters further, LCI-
Net assumes locality and positional invariance. These
assumptions mean that the transition probabilities from any
state s depend only on h(s), a function which extracts the
local features of s, with the property that T'(sq,a,ds) =
T(s2,a,0s) when h(s;) = h(sz). This assumption is
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Figure 1. Transition Operator based on Locally Connected Layer with Indirectly Interrelated Weights, shown with 4 shift operations,
simplified to show propagation for only one action rather than all actions in the action space. Map Image is a component of 6
representing properties of the environment. X (s) is a generic input which can represent value and belief.

appropriate because in general, only local environment
features influence the effect of actions within a single
time-step. For instance, only surrounding obstacles (within
the maximum distance an agent can traverse) matter to
determine whether collision will occur within a single time-
step. Positional invariance is appropriate because the same
pattern of local features can be expected to have the same
effect on dynamics regardless of where the pattern occurs
—any state where a wall blocks movement to the North
produces a similar result when moving North is attempted.
Utilising the above assumptions, LCI-Net learns a set
of kernel weights which allow the transition probabilities
for each state—action pair to be predicted based on local
environment features. It takes the scenarios W () € Wg as
inputs and uses a depth-wise spatial convolution network,
with kernel width %k to learn f7(.|#). The value k is set
to be much smaller than |S|. For example, suppose the
state space S is a 2D grid world and the support of T'
in each dimension of S is constrained to lie within r
distance, where r is the maximum distance the agent can
move in a single dimension of S within one time-step, then
k = 2r + 1. Each kernel weight in LCI-Net represents the
probability P(S;11 = s+ ds | h(s), Ay = a). Furthermore,
the tensor produced by convolving 6 with the learned
kernel weights would be of dimensions (|S|,|A],|D]).
In the 2D example above, if the size of the scenario
parameter € is m X n, then the size of the tensor is
(m,n,|A|,|D]). Each element of the tensor represents
the conditional probability T'(s,a,d0s) = P(Sty1 = s+
0s | St = s, Ay = a). This representation means that LCI-
Net learns a transition function that depends on the state,
action, and subsequent state by learning only k2| D|| A| many
parameters, with k& < |S| being the number of kernel weights
which is much smaller than the size of the state space.
Convolution layers have been used as a representation for
learning transition functions in MDPs and POMDPs (e.g.,
Tamar et al. (2017); Karkus et al. (2017)). However, LCI-
Net’s approach is different from typical approaches today,
where the learned kernel weights directly represent transition
probabilities Haarnoja et al. (2016); Jonkowski and Brock
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(2017); Tamar et al. (2017); Shankar et al. (2016); Karkus
et al. (2017). By using the approach above, LCI-Net relaxes
assumptions on invariance of the transition function across
the state space .S into one that is invariant with respect to the
local features of the states, without substantially increasing
the number of parameters to be learned. Moreover, LCI-Net’s
representation of the transition function uses the input and
goal images, together with the reward and value function
that are simultaneously learned, as it learns the transition
function. This mechanism is in contrast to the transition
function sub-network in VIN and QMDP-Net, where the
input and goal images do not have a direct influence on the
transition function being learned. As a result, LCI-Net is
more robust to initial learning errors in the reward and value
function.

Next, we must address the question of how the local region
D is defined. D is composed of a set of directions specifying
changes in position relative to the previous state. This set
may be selected either as the complete set of all possible
relative changes in position within some fixed distance, or
be some restricted subset, e.g. North, South, East and West
in 2D space. This set of directions is common between all
scenarios in Weg. The type of set of directions is a hyper-
parameter for the network.

An effective strategy for selecting sets of directions
is estimating the maximum likelihood outcome of the
transitions. For each action in the action space, the relative
change in position which has the highest likelihood of
resulting from performing the action should be included in
the set of shift directions. For example, in the case where an
agent performing a ’drive’ action will move directly forward
with probability «, and move in some other direction with
probability 1 — o, where o > 0.5, moving directly forward
should be included in the shift direction set.

If a domain has transition behaviour which is multi-modal,
then all movement directions with high likelihood should be
included. While this selection depends on having some prior
knowledge of the domain’s transition dynamics, estimating
the most likely outcome of an action is much simpler than
developing a complete ground-truth model of the system
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dynamics in many robotics applications, allowing the use of
a restricted subset of shift directions to still be leveraged in
domains without full a priori knowledge.

This strategy ensures that the directions in which
transitions most frequently occur for all scenarios in Weg are
directly represented in the learned transition model, allowing
values to be directly propagated through these directions.

Propagating Information

To enable information such as state-action values or beliefs
to be propagated via the learned transition probabilities in the
form T'(s,a,ds), LCI-Net first propagates the information
without concern for probability, then scales the propagated
information based on the learned transition probabilities.

Let X;(s) be a function defined over the state space at time
step ¢ and state s € S. In this work, X;(s) may represent a
set of state values V;(s) or a belief distribution b;(s). The
transition operator of LCI-Net takes X;(s) as input. This
input is duplicated |A| times and stacked along a new axis
to create channels corresponding to each possible action. For
each channel (aka. each action in A), one shift operation is
applied to the image for each direction ds € D, where D
is a set of directions (relative changes in position) —this
set is the same as the set D of relative changes included
in the support of the learned transition model T'(s,a,ds).
The resulting shifted images are stacked along an additional
new axis. Let us denote this tensor as X (s,a,ds). In the
case where |S| has 2 dimensions and size n x m, the
shape of X is (n,m,|A|,|D]). Each element in this tensor
represents propagation of information assuming the robot
moves with probability 1 according to the shift direction
ds. For instance, in value computation, the above tensor
represents the expected total reward to arrive in state s after
t steps if we assume the robot moves according to ds.

To account for uncertainty based on the learned
transition model T'(s,a,ds), LCI-Net performs element-
wise multiplication of X (s, a, ds), followed by element wise
summation over the D-axis. The resulting tensor is the
output X, 1(s), representing the function X;(s) propagated
forward by one time step via the learned transition model.

The above network structure can be viewed as analogous
to a locally connected network layer (in which locality is
encoded, but weights are not shared), where the weights
applied in each weighted sum are not independent trainable
variables, but are instead provided by an external tensor,
T(s,a,ds). This means that while the weights are not
directly shared, they remain interrelated in that they are
produced by fr(.|6), and so are each related to their local
environment by the same weights (the kernel of fr(.|0)).

This new type of locally-connected layer with indirectly
interrelated weights structure provides a compromise which
combines the superior generalisation capability of spatial
convolution layers with the greater expressiveness of locally
connected layers, while encoding algorithmic priors that are
well suited to the problems of planning and state estimation.
In the next subsection, we will elaborate the efficiency of
LCI-Net in terms of the number of learned parameters.
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Complexity Analysis

To enable scaling to real world applications, it is essential
that efficient time and space complexity are maintained.
Compared to prior methods that use spatial convolution
to learn the transition probabilities Haarnoja et al. (2016);
Jonkowski and Brock (2017); Tamar et al. (2017); Shankar
et al. (2016); Karkus et al. (2017), LCI-Net introduces only
a small increase in the number of trainable variables and
number of operations required, and has the same asymptotic
complexity in terms of state and action space size.

Let r be the maximum range within which the agent can
move in one time step. Equivalently, r is the maximum
distance within which an environment feature such as an
obstacle can influence the movement of the agent. This range
corresponds to a convolution kernel width of k& = 2r + 1.
This kernel width applies to both the transition probability
kernel in prior methods Tamar et al. (2017); Karkus et al.
(2017), and the fr(.|6) network kernel in LCI-Net.

In LCI-Net, the number of channels is equal to the product
of the size of the action space |A| and the number of shift
directions, | D|, giving a total number of learnable parameters
as k%™ | A||D|, where dim is the number of dimensions of
the state space. Wlog, throughout the following discussions,
we consider dim = 2. As a comparison, the number of
channels in prior methodsTamar et al. (2017); Karkus et al.
(2017) is equal to the number of available actions, which
for 2D state spaces, gives a total of k2| A| parameters to
be learned. Furthermore, in LCI-Net, no additional learnable
parameters are introduced outside of the fr(.|f) component
network. When D is selected to be the set of all possible
shifts within the maximum range r, and the number of
dimensions of S is fixed, the size of D is not directly
dependent on the size of the number of states in S. This
gives linear complexity in terms of the number of actions,
and constant complexity in terms of the number of states,
equivalent to that of prior methods.

In terms of the number of operations required, LCI-
Net requires one multiplication and one addition for each
combination of state, action, shift direction and kernel
position. Additionally, a shift operation is required for each
state. This gives a computational complexity proportional
to (k?|A||D| + 1)|S|, where D can be considered constant
when the number of spatial dimensions and maximum
movement range are below a fixed maximum. As a
comparison, prior methodsTamar et al. (2017); Karkus et al.
(2017) require one multiplication and one addition for each
combination of state, action and kernel position, resulting in
a total number of operations proportional to k?|A||S|. This
comparison shows that LCI-Net and prior methodsTamar
et al. (2017); Karkus et al. (2017) have identical order of
computational time complexity in terms of state and action
space size.

In general, the size of | D| is linear in the transition range r
and the number of dimensions, dim(S). However, scalability
can be further improved by restricting D to a subset of
the set of all possible shifts. Our experimental results on
a diverse set of domains indicate that certain restrictions
do not detrimentally affect policy performance or learning
convergence speed.
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Figure 2. Value lteration network block. LCI-Net becomes its
forward propagation module. Map Image is a component of
representing properties of the environment. Goal Image is a

component of € representing properties of the task/objective.

Applying LCI-Net

In this work, we apply LCI-Net to replace the forward
propagation module of an end-to-end decision-making
system in fully observable scenarios (VIN Tamar et al.
(2017)) and partially observable scenarios (QMDP-Net
Karkus et al. (2017)).

Applying LCI-Net to VIN

The Value Iteration Network (VIN) implements value
iteration as a recurrent neural network. This network consists
of arepeating block structure, in which each block represents
a single step of value iteration and blocks can be stacked
to arbitrary depth to produce any desired planning horizon.
Each value iteration block contains a forward propagation
module that computes the intermediate value V/, (s, a) =
Y wes T(s,a,5")Vi(s') of eq. (4). We replace this forward
propagation module in each value iteration block with LCI-
Net.

Each value iteration block takes as input a value image
V4 (s]0), and produces as output updated values based on one
additional planning step, V;1(s|@), with the input to the first
block, Vp(s|6), taken from the prediction of the immediate
reward associated with each s € S provided by fr(.|9).
In this application, LCI-Net takes V;(s|f) and produces
V/1(s,a). The reward image R(s,a) is then summed with
V/,1(s,a) to incorporate the immediate reward received
at time step ¢t + 1, yielding Q¢+1(s,a). Viy1(s|0) is then
produced by selecting the action channel of QQ;;1 with the
greatest expected return. Fig. 2 illustrates this block.

Applying LCI-Net to QMDP-Net

QMDP-Net’s overall architecture consists of two compo-
nents: Planning and Belief Update. Both planning and belief
update contain forward propagation operations. LCI-Net
replaces the forward propagation module in both of those
components.

The planning component approximates eq. (2)
using QMDP and is implemented similar to VIN.
QMDP approximates eq. (2) by assuming that the
agent’s state becomes fully observable after the
first step. More precisely, it computes V*(b) =
maxgea Y cqb(s
where V*(s) is approximated via value iteration, i.e., via
iterative computation of

sa—i—vz

VtH()—maX s,a,8 V(s @
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Figure 3. Belief Update network block. LCI-Net becomes its
forward propagation module. Map Image is a component of 8
representing properties of the environment.
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until ¢ > t,,4, for a constant time limit ¢,,,,. QMDP-Net
adopted the value iteration implementation of VIN Tamar
et al. (2017), as described in the previous sub-section. In this
application, LCI-Net also replaces all forward propagation
modules in the planning component of QMDP-Net, similar
to the application of LCI-Net in VIN.

A POMDP agent maintains a belief, which is updated
at each time step, as governed by eq. (3). In QMDP-Net,
belief update uses a neural-network based histogram filter,
called E2E-HF. The forward propagation module is used in
this filter to compute in the intermediate value b} (s, a) =
> scs T'(s,a,5")b(s) in eq. (3). We replace this module in
the belief update block with LCI-Net.

This belief update block takes a prior belief b;, an action
a+ and an observation o; as input, and produces the updated
belief b1 as output, which is stored as the prior belief
for the next action selection. In this application, LCI-Net
is applied to the prior belief image to produce b;_ (s, a),
the belief propagated forward by one time step after action
a € A is performed. This tensor is indexed based on the
performed action a;, with the channel corresponding to a
retained, and all other channels discarded, giving b'(s), the
updated prior belief.

In parallel, the observation model Z(s|o) produced by the
model component network fz(.|0) is indexed based on the
perceived observation oy, with the channel corresponding to
ot selected to give Z(s), the likelihood of each state based on
the perceived observation. b(s) and Z(s) are then multiplied
and normalised to give the posterior belief b;11(s). Fig. 3
illustrates this Belief Update component.

Experiments

Experimental Setup

To evaluate the potential of LCI-Net in increasing the
performance of combined learning and planning, we replace
the forward propagation module of two different state-of-
the-art deep learning for planning architectures — Value
Iteration Networks (VIN) Tamar et al. (2017) for fully
observable planning, and QMDP-Net Karkus et al. (2017)
for partially observable planning — and compared these
modified variants of VIN and QMDP-Net (which we denote
as LCI-Net for short) with the original VIN and QMDP-
Net on a variety of fully observable (VIN) and partially
observable (QMDP-Net) stochastic environments. Results of
LCI-Net are based on an implementation developed on top
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Figure 4. Example of a 9 x 9 dynamic maze environment in
both possible gate states. Light grey represents an open gate,
dark grey a closed gate. The agent must navigate from the red
circle to the blue circle. The red line denotes the optimal
trajectory.

of the software released by the authors of VIN and QMDP-
Net, while VIN and QMDP-Net results are based on their
released code (with VIN code modified for compatibility).
The implementation of LCI-Net is available at https://
github.com/RDLLab/lci-net

Both networks are trained via imitation learning using the
same set of expert trajectories. In the fully observable case,
expert trajectories are generated by solving ground-truth
MDP models with value iteration. In the partially observable
case, expert trajectories generated by applying the Qppp
algorithm to manually constructed ground-truth POMDP
models. Only trajectories where the expert was successful
were included in the training set. The networks interact only
with the expert trajectories and not with the ground-truth
model. All hyper-parameters for both networks are set to
match those used in the VIN and QMDP-Net experiments.

In all cases for both training and testing, the number of
planning block repetitions is set to three times the largest
dimension of the current environment. For example, for a
10 x 10, 30 repetitions of the planning block are used.

Training was conducted using GPU on an Nvidia GeForce
RTX2070 GPU with 8GB of dedicated memory. The GPU
is installed in a machine equipped with an Intel Xeon Silver
4110 CPU (8 cores, 16 threads at 2.10GHz) and 128GB of
system RAM. We tested the networks on four domain types:

2D Dynamic Maze A set of navigation problems in a
maze environment with structure that mutates during run-
time in a way which qualitatively affects the optimum
policy, designed to measure the robustness of a policy to
dynamic environments. The robot must localise itself and
navigate to the goal, while accounting for the possibility of
environmental changes.

The robot is given a map of obstacle positions, a specified
goal location, and initial belief distribution, which together
form 6 for each scenario in the set. No other environment
information is given, and the POMDP model is not known
a priori. At each time step, the robot selects a direction to
move in: “move north”, “move south”, “move east”, “move
west” or “stay in position”. The outcomes of actions are
probabilistic, with the support of the transition probabilities
including the adjacent states in each of the 4 movement
directions as well as the previous state. The agent moves in
the chosen direction with probability p; all other outcomes
have probability |i§|;—pl' Observations are received based on
whether an obstacle is present in the adjacent cell in each
of the “north”, “south”, “east” and “west” directions, with
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an independent fixed chance to receive an incorrect sensor
reading for each direction.

To generate the dynamic maze layout, a maze is initially
constructed using randomized Prim’s algorithm. The maze is
divided into 2 partitions, with 2 cells from the border selected
to be gates. At each time step, exactly one gate is open and
the gates will swap from open to closed and vice versa with
certain probability. During run time, the environment map
provided to the agent is updated when a gate swap occurs.
The start and goal position are selected such that a gate swap
will cause the optimum solution to be qualitatively changed.
Fig. 4 illustrates an example. Two variations of this scenario
are evaluated:

V1: The network is trained using only expert trajectories
from a static maze navigation task. The environment image
provided in 6 shows only the positions of current free spaces
and current obstacles, without special marking for open or
closed gates.

V2: The network is trained using trajectories based on an
expert which plans on a dynamic ground truth POMDP
model, allowing the expert to decide whether to wait for a
nearby closed gate to open. The environment image received
by the agent denotes the position of the gate which is
currently closed. This may allow the agent to learn to
intelligently decide whether to move or wait for the currently
open gate to change. The open gate is not represented in the
image.

The networks are trained on a set of 9x9 dynamic
maze environments containing 2000 environments with 5
trajectories per environment, and evaluated on both 9x9
and 29x29 dynamic mazes. Evaluation results are based
on 1250 trials composed of 50 environments, 5 trajectories
per environment and 5 repetitions per trajectory. For all
experiments, the action space, observation space, transition
probabilities and observation probabilities are common
between the training and testing environments.

2D Navigation with Large Scale Realistic Environments
A set of robot navigation problems in a general 2D grid
setting with noisy state transitions and limited observations.
The robot receives a map of obstacle positions, a specified
goal location, and initial belief distribution, together forming
0. The POMDP model is not known a priori. At each time
step, the robot selects a direction to move in, and receives a
noisy observation indicating whether an obstacle is present
in each direction. The networks are trained on artificial
environments, with obstacle positions sampled at uniform
random. Two different sizes of training environment are
employed — 10x10 and 20x20. The 10 x 10 set contains
2000 environments with 5 trajectories per environment,
while the 20 x 20 set contains 6000 environments with 5
trajectories per environment.

After training on the artificial environment set, evaluation
is performed on environments modelled on the LIDAR maps
from the Robotics Data Set Repository Howard and Roy
(2003). The robot receives an environment floor plan, a
specified goal position and a randomly initialised belief
distribution. No other information or model is provided.
Three different maps are evaluated in both deterministic
and stochastic form, each with dimensions on the order of
100x100. For the deterministic case, evaluation results are
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Figure 5. Example of a 3D grasping task. Orange indicates the
position of the grasping hand, and green and blue indicate an
object to be grasped, where the blue areas are feasible grasp
points. The left image shows a possible initial pose for the
grasping hand, while the right image shows the hand grasping
at feasible grasp point on the object.

based on 100 trials for each map. For the probabilistic case,
results are based on 150 trials per map.

In the fully observable case, the action space includes
movement in both axis aligned and diagonal directions, while
in the partially observable case, the action space includes
only axis aligned directions and remaining in the same
position (e.g. to receive an additional observation when
belief confidence is low). The outcome of actions is subject
to probabilistic noise in both cases. The support of the
transition probabilities includes the adjacent states in each
of the allowed movement directions (8 directions for the
fully observable case, 4 directions for the partially observed
case) as well as the previous state. In both cases, the agent
moves in its chosen directionlwith probability p, and all other

—p

outcomes have probability TAT=T"

3D Navigation of Multi-rotor Drone A set of navigation
problems in 3 dimensional space with noisy state transitions
and limited, unreliable observations, representing the task
of control of autonomous multi-rotor drones through spaces
with dense obstacles with limited sensing. The drone is given
a 3D model of obstacle positions, a specified goal location,
and initial belief distribution as #, and does not know the
POMDP model a priori. The robot must localise itself and
navigate to the goal. At each time step, the agent selects
from the following actions: “move north”, “move south”,
“move east”, “move west”’, “move up”, “move down” or
“stay in position”. The support of the transition probabilities
includes the adjacent states in each of these movement
directions as well as the previous state. The agent moves in
its chosen direction with probability p; all other outcomes
have probability ‘lAl%pl.

The networks are trained on a set of artificial 7 x 7 x 7
3D environments comprising of 6000 environments with
5 trajectories per environment, with evaluation performed
on both 7x 7 x 7 and 14 x 14 x 14. Evaluation results
are based on 1250 trials composed of 50 environments, 5
trajectories and 5 repetitions.

2D and 3D Grasping A robot gripper picks up randomly
generated obstacles placed on a surface using a two-finger
hand with observations received only via touch sensors
mounted on the hand’s fingertips. The agent receives a 2D
image or 3D model of the shape object to be grasped and
an additional image or model indicating which parts of the
object can feasibly be grasped for each scenario — together
these form 6. The agent does not know its initial pose, and
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outcomes of transitions and sensor readings are probabilistic.
We evaluate the networks on simplified variants of this task
in both 2 and 3 dimensions. Figure 5 shows an example
3D grasping scenario. In the 2D case, the available actions
are “move north”, “move south”, “move east”, “move west”
or “stay in position”. In the 3D case, the additional actions
“move up” and “move down” are also available. The support
of the transition probabilities includes the adjacent states in
each of these movement directions as well as the previous
state. In both cases, the agent moves in its chosen direction
with probability p; all other outcomes have probability

The networks are trained on a fixed set of randomly
generated objects placed in random positions on a table
surface, and evaluated on a new set of previously unseen
objects. In the 2D case, the training set comprises 80 objects,
with 125 combinations of object position and initial gripper
pose. In the 3D case, the training set is composed of 6000
object shapes, with 5 distinct positions for the obstacle and
the gripper starting pose. Evaluation results are based on
1250 trials composed of 50 environments, 5 trajectories and
5 repetitions.

Results and Discussion

Our results demonstrate that LCI-Net, despite representing
only a relatively small change in the network architectures of
VIN and QMDP-Net, is able to deliver significant increases
in performance and efficiency in both fully and partially
observable domains.

Fully Observable Domains Table 1 presents a comparison
of the success rate, average number of steps, and collision
rate of executing the policies generated by LCI-Net and
VIN on 2D navigation tasks, while Table 2 compares
the same performance metrics when these trained models
are evaluated on previously seen large scale realistic
environments.

Several important conclusions can be taken from these
results. By introducing LCI-Net to the VIN architecture,
higher success rates and lower collision rates are delivered
in almost all tests, with shorter average trajectory lengths in
many cases even when success rate is substantially higher
for LCI-Net. These results indicate that a better policy can
be generated simply by replacing the forward propagation
module of VIN with LCI-Net.

Additionally, the disparity in performance between the
architectures increases as the size of the evaluation
domain grows larger than the training domain, with
LCI-Net producing significantly higher success rates in
the 28x28, 40x40 and realistic environment cases. This
shows that introducing LCI-Net substantially improves the
generalisation capability of VIN, enabling agents to operate
in large environments while only requiring trajectories
produced from small artificial domains for training.

Table 3 shows comparison results for fully observable
3D multi-rotor drone navigation task. Here, performance
is similar between the 2 networks when evaluated on the
same domain size as used for training, but LCI-Net shows
greater advantage in both success rate and collision rate as
the evaluation environment size is increased beyond the size
of the training environment.
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Table 1. Comparison of performance of LCI-Net and VIN on fully observable 2D grid navigation benchmarks.

Environment Network Type Success Rate Traj Length Collision  Rate
(95% CI) (95% CI)
2D Grid 8x8 VIN 0.962 55 (* 06 ) 0.172 (£ 0.021 )
(trained on 8x8) LCI-Net 0.969 59 (= 04 ) 0090 (£ 0022 )
2D Grid 16x16 VIN 0.631 118 (= 13 ) 0267 (£ 0.019 )
(trained on 8x8) LCI-Net 0.578 125 (& 12 ) 0117 (£ 0017 )
2D Grid 16x16 VIN 0.814 147 (£ 12 ) 0102 (* 0.019 )
(trained on 16x16) LCI-Net 0.995 99 (= 07 ) 0067 (£ 0016 )
2D Grid 28x28 VIN 0.486 280 (£ 28 ) 0080 (+ 0.016 )
(trained on 16x16) LCI-Net 0.685 184 (£ 1.6 ) 0.069 (= 0016 )
2D Grid 40x40 VIN 0.289 412 (£ 43 ) 0074 (£ 0013 )
(trained on 16x16) LCI-Net 0.420 323 (£ 3.1 ) 0068 (£ 0011 )

Table 2. Performance of LCI-Net and VIN on fully observable large scale realistic environment navigation benchmarks. Training is
performed on a set of small artificially generated environments, while evaluation is performed on large environments based on

LIDAR scans of buildings.

Environment Network Type Success Rate Traj Length Collision Rate
95% CI) 95% CI)
Building 79 VIN 0.173 493 (£ 242 ) 0434 (£ 0.057 )
(trained on 16x16) LCI-Net 0.373 176.0 (£ 391 ) 0281 (= 0.039 )
Intel Labs VIN 0.060 534 (= 172 ) 0300 (£ 0.05 )
(trained on 16x16) LCI-Net 0.233 1628 (£ 331 ) 0292 (= 0.043 )
Hospital VIN 0.200 304 (= 80 ) 0210 (£ 0.043 )
(trained on 16x16) LCI-Net 0.513 181.6 (= 417 ) 0224 (£ 0.031 )

Table 3. Performance of LCI-Net and VIN on fully observable 3D multi-rotor drone navigation domain benchmark. LCI-Net (ND)

indicates LCI-Net with D restricted to non-diagonal directions.

Environment Network Type Success Rate Traj Length Collision  Rate
(95% CI) 95% CI)
3D Grid 7x7x7 VIN 0.962 10.8 (£ 0.7 ) 0.065 (£ 0.006 )
(trained on 7x7x7) LCI-Net (ND) 0.952 103 (£ 07 ) 0.065 (£ 0.006 )
3D Grid 14x14x14 VIN 0.902 181 (= 06 ) 0.088 (+ 0.009 )
(trained on 7x7x7) LCI-Net (ND) 0.942 189 (= 07 ) 0.054 (£ 0.005 )

Partially Observable Domains Moving to partially observ-
able domains, where LCI-Net is able to enhance both
value and state estimation, further highlights the substantial
increase in performance which can be enabled by integrating
LCI-Net.

Table 4 presents comparisons on the success rate, average
number of steps, and collision rate of executing the policies
generated by LCI-Net and by QMDP-Net for the partially
observable dynamic maze environment tasks. Table 4 shows
the performance of LCI-Net on the same task where D is
restricted to Non-Diagonal shift directions.

A number of key conclusions can be drawn from these
results. First, by incorporating LCI-Net into QMDP-Net,
we are able to produce consistently higher success rates
and lower collision rates, compared to the original QMDP-
Net. In the cases where success rates are closest between
the networks, LCI-Net produces average trajectory lengths
which are near or below those produced by QMDP-net. This
applies both when D includes all possible shifts and when
D is selected to contain Non-Diagonal shifts only, with the
the Non-Diagonal variant delivering comparable or better
performance than the version which uses all possible shift
directions.
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Secondly, as also observed in the fully observable
domains, the size of the disparity between the performance of
the architectures becomes dramatic when the learned models
are generalised to larger environments. In Dynamic Maze
V1, the success rate of QMDP-Net drops by more than 95
percent when environment size is increased to 29 x 29, while
the ND variant of LCI-Net has its success rate reduced by
less than 25 percent. The V2 maze variant gives similar
results - the QMDP-Net success rate drops by almost 90
percent, while the ND version of LCI-Net drops by less than
40 percent.

The results indicate that the introduction of LCI-Net
greatly improves the generalisation capability of QMDP-
Net, allowing effective policies to be found in large
environments while requiring only expert trajectories on
small environments for training. This result is likely enabled
by the greater domain knowledge able to be encoded via
the structure of the LCI-Net forward propagation. This
represents a significant step towards making end-to-end
learning for planning practical for real world applications.

Table 5 shows a comparison of the performance of policies
produced by LCI-Net and by QMDP-Net for the partially
observable 2D navigation tasks. The trends from the dynamic
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Table 4. Performance of LCI-Net and QMDP-Net on the partially observable 2D dynamic maze domain. LCI-Net represents our
network incorporating LCI-Net with all possible shift directions included, LCI-Net (ND) represents our network with only

Non-Diagonal shift directions included.

Environment Network Type  Success Rate  Traj Len (95%CI) Col Rate (95%CI)
Dynmaze V1 9x9 QMDP-Net 0.887 23.7 (£ 1.1 ) 0.226 (= 0.009 )
(trained on 9x9) LCI-Net 0.942 202 (£ 08 ) 0.195 (£ 0.008 )
LCI-Net (ND) 0.985 186 (£ 07 ) 0.157 (£ 0.007 )
Dynmaze V1 29x29 QMDP-Net 0.031 237 (£ 1.1 ) 0226 (£ 0.009 )
(trained on 9x9) LCI-Net 0.302 20.2 (£ 08 ) 0.195 (= 0.008 )
LCI-Net (ND) 0.743 186 (£ 07 ) 0.157 (£ 0.007 )
Dynmaze V2 9x9 QMDP-Net 0.808 241 (£ 1.2 ) 0.213 (= 0.008 )
(trained on 9x9) LCI-Net 0.978 187 (£ 08 ) 0.123 (£ 0.005 )
LCI-Net (ND) 0.971 186 (£ 08 ) 0.135 (£ 0.006 )
Dynmaze V2 29x29 QMDP-Net 0.091 71.8 (£ 0.7 ) 0412 (£ 0.009 )
(trained on 9x9) LCI-Net 0.590 597 (£ 24 ) 0.228 (= 0.011 )
LCI-Net (ND) 0.604 60.7 (£ 23 ) 0.148 (£ 0.005 )

Table 5. Performance of LCI-Net and QMDP-Net on 2D navigation benchmarks. Training is performed on a set of small artificially
generated environments, while evaluation is performed on large environments based on LIDAR scans of buildings. Det indicates an
environment with deterministic transitions and observations, while all other environments have stochastic transitions and

observations.

Environment Network Type  Success Rate Traj Len (95% CI) Col Rate (95%CI)

Building 79 Det QMDP-Net 0.120 60.2 (£ 185 ) 0.191 (£ 0.067 )
(trained on 10x10 Det) LCI-Net 0.870 737 (£ 80 ) 0.031 (£ 0.026 )
Building 79 QMDP-Net 0.113 138.8 (£ 402 ) 0349 (£ 0.044 )
(trained on 10x10) LCI-Net 0.567 139.0 (£ 120 ) 0.068 (= 0.016 )
Building 79 QMDP-Net 0.508 1267 (£ 123 ) 0.177 (£ 0.027 )
(trained on 20x20) LCI-Net 0.664 1269 (£ 102 ) 0.050 (£ 0.007 )
Intel Labs Det QMDP-Net 0.120 102.8 (+ 488 ) 0.059 (= 0.045 )
(trained on 10x10 Det) LCI-Net 0.940 874 (= 100 ) 0.016 (£ 0.018 )
Intel Labs QMDP-Net 0.073 815 (= 475 ) 0.368 (£ 0.043 )
(trained on 10x10) LCI-Net 0.547 1388 (£ 150 ) 0.067 (£ 0.010 )
Intel Labs QMDP-Net 0.468 138.6 (£ 121 ) 0.177 (£ 0.027 )
(trained on 20x20) LCI-Net 0.664 1384 (£ 10.0 ) 0.065 (£ 0.012 )
Hospital Det QMDP-Net 0.050 590 (£ 634 ) 0.345 (£ 0.069 )
(trained on 10x10 Det) LCI-Net 0.500 746 (£ 100 ) 0.060 (£ 0.039 )
Hospital QMDP-Net 0.093 1045 (£ 347 ) 0.337 (£ 0.041 )
(trained on 10x10) LCI-Net 0.433 1133 (£ 148 ) 0.128 (£ 0.025 )
Hospital QMDP-Net 0.440 1233 (£ 122 ) 0.113 (£ 0.020 )
(trained on 20x20) LCI-Net 0.552 107.1 (& 8.8 ) 0.083 (= 0.008 )

maze tasks continue. LCI-Net consistently produces a higher
overall level of policy performance, with the distinction
between the networks most pronounced when training is
performed on the smaller 10x 10 environments. The policy
produced by QMDP-Net from the 10x 10 returned a success
rate of below 15% in each of the trialed environments, while
the policy produced by LCI-Net achieves success rates above
50% for all but one of the environments, and above 80% for
two environments.

Table 6 shows results for the partially observable
3D multi-rotor drone navigation task. Both network
architectures are able to produce high rates of success and
low rates of collision when evaluated on environments of
the same size as used in training. Increasing the scale and
complexity of the evaluation environment again shows an
advantage in performance produced by LCI-Net.

Table 7 presents results for the partially observable object
grasping tasks. Here, LCI-Net continues to produce higher
success rates. Both networks are able to produce effective
policies for 3D grasping on environments with the same
dimensions as the training set, though generalising to larger
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environments is challenging for both architectures, with LCI-
Net giving a small advantage in success rate.

Table 8 provides a comparison of the time and memory
required for training for each environment between LCI-
Net and QMDP-Net. The more expressive transition operator
incorporated in LCI-Net introduces only a small amount of
extra complexity. The additional time required per epoch of
training is small in most cases, and is often compensated for
by a decrease in the number of epochs of training required to
reach convergence.

When only Non-Diagonal shifts are included in D, the
complexity results are particularly promising. In some cases,
LCI-Net with only Non-diagonal shifts requires less time
per epoch of training than QMDP-Net while converging in
fewer epochs, resulting in a significant reduction in the total
amount of time for training, while still producing policies
which perform at a higher level than QMDP-Net policies.

In most cases, the additional amount of memory
consumed by LCI-Net is negligible relative to total memory
consumption. While scaling to larger environments results
in an increase in required memory, the rate of growth in
memory consumption is very close to that of QMDP-Net.
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Table 6. Performance of LCI-Net and QMDP-Net on 3D navigation of multi-rotor drone. LCI-Net (ND) indicates LCI-Net with D

restricted to non-diagonal directions.

Environment Network Type  Success Rate Traj Len (95% CI) Col Rate (95% CI)

Grid 3D 7x7x7 QMDP-Net 0.949 172 (= 09 ) 0.069 (£ 0.005 )
(trained on 7x7x7) LCI-Net (ND) 0.950 16.1 (£ 09 ) 0.066 (= 0.005 )
Grid 3D 14x14x14 QMDP-Net 0.514 263 (= 08 ) 0.086 (£ 0.006 )
(trained on 7x7x7) LCI-Net (ND) 0.729 268 (£ 07 ) 0.063 (= 0.004 )

Table 7. Performance of LCI-Net and QMDP-Net on grasping tasks. LCI-Net (ND) indicates LCI-Net with D restricted to

non-diagonal directions.

Environment Network Type  Success Rate Traj Len (95% CI) Col Rate (95% CI)

Grapser 2D 14x14 QMDP-Net 0.606 182 (= 1.2 ) 0.118 (£ 0.008 )
(trained on 14x14) LCI-Net (ND) 0.700 190 (= 1.1 ) 0.116 (£ 0.008 )
Grapser 3D 7x7x7 QMDP-Net 0.883 102 (= 08 ) 0.163 (£ 0.012 )
(trained on 7x7x7) LCI-Net (ND) 0.922 107 (= 08 ) 0.177 (£ 0.013 )
Grapser 3D 14x14x14 QMDP-Net 0.298 277 (= 20 ) 0.359 (£ 0.014 )
(trained on 7x7x7) LCI-Net (ND) 0.319 299 (= 20 ) 0.409 (= 0.016 )

Table 8. Comparison of time and resources required for training in each environment between our network with LCI-Net and
QMDP-Net. LCI-Net represents our network incorporating LCI-Net with all possible shift directions included, LCI-Net (ND)
represents our network with only Non-Diagonal shift directions included. Time per epoch is in mm:ss format, while total train time is
in hh:mm:ss format. Memory usage refers to the amount of GPU memory consumed - this is the only memory used for training.

. Network # Shift Time per  Epochs to Total Train Memory
Environment Type Directions  epoch converge Time Usage (MiB)

QMDP-Net 3:08 612 31:57:36 2333

Grid 2D 20x20 LCI-Net 9 3:46 678 42:33:48 2609

LCI-Net (ND) 5 2:44 624 28:25:36 2333

QMDP-Net 0:20 997 5:32:20 785

Dynmaze V1 9x9  LCI-Net 9 0:28 996 7:44:48 789

LCI-Net (ND) 5 0:21 828 4:49:48 789

QMDP-Net 0:26 920 6:38:40 1553

Dynmaze V2 9x9 ~ LCI-Net 9 0:31 613 5:16:43 1557

LCI-Net (ND) 5 0:26 463 3:20:38 1557

) QMDP-Net 2:48 451 21:02:48 4893

Grid 3D 7x7x7 L CI-Net (ND) 7 2:26 609 24:41:54 4913

QMDP-Net 5:43 544 51:49:52 527

Grasper 2D 14x14 [, CI-Net (ND) 5 5:57 329 32:37:33 529

QMDP-Net 3:33 371 21:57:03 5405

Grasper 3D 7X7X7 [ CI-Net (ND) 7 3:10 304 16:02:40 5421

Summary in performance, with generalisation capability increased by

Many neural network architectures for solving stochastic
planning with partially unknown models based on end-to-
end learning have been proposed. Across these architectures,
there are a number of seemingly small components that
have been used repeatedly, creating a great potential
benefit in improving the efficiency of these components.
Improvements in these components will likely improve
the overall performance, similar to how improvement in
“primitive” computations in motion planning improves the
performance of the overall planning capability. Taking
a step in this direction, this paper presents LCI-Net, a
neural-network module that computes one-step information
propagation governed by a learned stochastic model of the
system’s dynamics. It is a simple neural-network module that
can be plugged into various neural network architectures.
Evaluating LCI-Net on VIN Tamar et al. (2017) and QMDP-
Net Karkus et al. (2017) (and hence on E2E-HF Jonkowski
and Brock (2017)), on 2D and 3D navigation and grasping
benchmarks indicate that LCI-Net creates significant gains
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multiple folds.
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