
Exploiting Trademark Databases for Robotic Object Fetching

Joshua Song1 and Hanna Kurniawati2

Abstract— Service robots require the ability to recognize
various household objects in order to carry out certain tasks,
such as fetching an object for a person. Manually collecting
information on all the objects a robot may encounter in a
household is tedious and time-consuming; therefore this paper
proposes the use of large-scale data from existing trademark
databases. These databases contain logo images and a descrip-
tion of the goods and services the logo was registered under.
For example, Pepsi is registered under soft drinks. We extend
domain randomization in order to generate synthetic data
to train a convolutional neural network logo detector, which
outperformed previous logo detectors trained on synthetic data.
We also provide a practical implementation for object fetching
on a robot, which uses a Kinect and the logo detector to identify
the object the human user requested. Tests on this robot indicate
promising results, despite not using any real world photos for
training.

I. INTRODUCTION

Object fetching, that is, getting a robot to recognize the
object the user desires based on input from vision sensors
and then retrieving it [1], [2], is an important task for service
and assistive robots. These types of robots assist people at
work or in their homes with daily tasks, which means to be
effective, they must be able to recognize the large variety
of objects in a household. However, such a recognition task
remains an open problem. Convolutional Neural Networks
(CNN) are advancing this domain tremendously, but require
a huge amount of data. While category level (e.g. bottle,
cup) classification is feasible, instance level (e.g. bottle of
Pepsi or Coca-Cola, cup of Starbucks coffee) is more difficult
since more data is required and the objects can be difficult to
differentiate. There is work in progress on collecting 3D data
for household objects, but this is a time consuming task and
these datasets are currently incomplete [3], [4]. To alleviate
the huge data requirement, we propose a novel approach:
Exploit the availability of structured data from registered
trademarks as a source of images and categorical information
for both the CNN training and inference phase.

Companies place their logos on their products as dis-
tinguishing factors. Since companies would like to protect
their logos, in general these logos are legally registered
as trademarks. Organizations such as the World Intellectual
Property Organization (WIPO) maintain databases of logos
and their Nice Classification [5]. The Nice Classification
identifies the goods and services category the logo was
registered under. The list of goods is extensive and includes

This work was supported through an Australian Government Research
Training Program Scholarship.

1 School of ITEE, The University of Queensland, Australia.
2 Research School of CS, The Australian National University.
j.song@uq.edu.au, hanna.kurniawati@anu.edu.au

(a) Movo needs to find a soft drink in the cluttered shelf

(b) Detections are shown with trademark registra-
tion numbers and detection confidence. Trademark US-
77585961 (Pepsi) is registered under soft drinks and thus
satisfies the request.

Fig. 1: Robot trial with logo detector trained only on syn-
thetic RDSL images

categories such as “soft drinks” and “soap”. Therefore, such
databases contain a massive amount of labelled data, i.e.,
images of the logos labelled with their brand owners and
product categories, which could be used for training a CNN.

However, the characteristics of images in trademark
databases are very different from the images that a robot
must work with: The logos images in the databases are not
placed on products, the images do not contain any other
logos nor objects, and are obviously not taken by a (relatively
cheap) camera. Considering these differences, if used as is,
the images in the trademark databases are unlikely to help
with object recognition in robotics.

This paper presents an approach for object fetching in
robotics to benefit from the massive amount of labelled
data available in the trademark databases, despite the afore-
mentioned difficulties. In particular, we propose two uses
of the trademark datasets. First is for object recognition.
We propose an extension of domain randomization, called



Randomization-based Data Synthesizer for Logos (RDSL),
that converts the trademark images of logos into synthetic
“camera images”. To this end, RDSL starts by automatically
downloading the logo images from trademark databases and
converting them into simple 3D scenes of logos (i.e., logos
placed on simple geometrical objects). It then randomizes
various parameters related to the logo placement, object
placement, camera parameters, and background environment.
The entire process of RDSL is automated. The synthetic
images it generates are used as training data for a CNN for
the object recognition component of an object fetching task.

The second proposed use of trademark databases is a
simple method that exploits the categorical information to
help the robot in understanding users’ request. In particular,
it will allow users to ask the robot to retrieve objects based
on both categorical information (e.g., soft drinks or soap) or
brands (e.g., Coke or Pepsi).

We test RDSL on a benchmark problem for logo detection
(i.e., FlickrLogos-32 [6] ) and test the entire object fetching
pipeline on a Kinova Movo robot. The results are promising.
The logo detectors that were trained using only synthetic data
generated by RDSL outperformed previous logo detectors
trained on synthetic data. We also demonstrate that the logo
detector trained using only data generated by RDSL can be
successfully used for object fetching tasks.

II. RELATED WORK

Early approaches to logo detection used keypoint detec-
tors, such as SIFT [7], [8]. More recent work has shown that
CNNs outperform previous methods for logo recognition [9],
[10], [11]. The improvements in computer vision have been
employed by several companies in order to provide query-by-
image services for logos. For example, TrademarkVision [12]
allows a user to upload a logo image in order to find similar
logos for the purpose of finding copyright infringement.

The CNN architectures referenced in this paper include
VGG [13] and MobileNet [14]. MobileNet is a smaller and
faster network while still having similar accuracy to VGG.

In a classification configuration, CNNs are invariant with
regard to the position of the object within the image.
However, it is often useful to localize and identify multiple
objects within the image; this is termed object detection.
One approach to this is Regions with CNN features (R-
CNN) [15], which first finds regions of interest based on
color and texture, then classifies the regions through a CNN
and Support Vector Machine (SVM). Detection speed was
improved with Fast R-CNN [16] and Faster R-CNN [17].
Faster R-CNN uses convolution features for both region pro-
posals and class prediction. These convolution features may
be taken from classification CNNs. Example configurations
include Faster R-CNN with ResNet, Faster R-CNN with
Inception and so on. An even faster object detection method
(though slightly less accurate) is Single Shot MultiBox
Detector (SSD) [18], which eliminates proposal generation
and performs all computation in a single network.

In addition to class labels, object detectors also require
their training data to be annotated with either bounding

boxes or pixel masks for each object instance. Publicly
available datasets include COCO [19] and Open Images
[20], which are datasets for 91 and 600 object categories,
respectively. Ammirato et al. [21] modified general object
detectors trained on such datasets to be able to detect specific
object instances (e.g. my mug instead of any mug), given
several new images of the object instance.

Instead of training a new CNN model from scratch, the
time and data required for training can be reduced through
a process called transfer learning or fine-tuning [22]. In this
process, a model that has been trained for a certain task is
re-trained on data for the new task.

The training data can be expanded through augmentation
techniques such as rotating, flipping and cropping images
[23]. In addition to data augmentation, new training data
can be generated through synthetic means. Eggert et al. [10]
and Su et al. [11] generated synthetic data for logos by
applying random geometric and illumination transforms to
logos and pasting them on random photos. Montserrat et al.
[24] followed a similar approach but used a CNN to estimate
depth in the background image in order to blend the logo
image more realistically.

Recent work [25] used simulators and domain random-
ization to generate synthetic data. The parameters of the
simulator are randomized in unrealistic ways in order to force
the CNN to learn the essential features of the target object.
The synthetic data was then used to train an object detector
for robot localization and grasping. They suggest that “with
enough variability in the simulator, the real world may appear
to the model as just another variation” [25]. Tremblay et al.
[26] introduced flying distractors as a domain randomization
component, which are random geometric shapes added to the
scene. They then demonstrated the effectiveness of domain
randomization for car detection.

Hinterstoisser et al. [27] generated synthetic data for a
household objects detector by composing CAD models of
those objects on random background images. They found
that freezing the feature extractor layers and only fine-tuning
the region proposal layers improved performance.

Similar to the above methods, our synthetic data generator,
RDSL, also uses randomization. However, unlike the above
methods that start with a relatively meaningful simulated
scene (e.g., a table for [25] and road for [26]), in our problem,
we do not have any such initial scene. In fact, the input
images we have for the data generator are stand-alone logos,
while in the real world, these logos are placed on various
different objects.

III. USING TRADEMARK DATABASE FOR FETCHING

Our pipeline for fetching tasks consists of two phases, a
training phase and an execution phase. In the training phase,
logo images are downloaded from the database and processed
through our synthetic data generator (RDSL) described in
Section III-A. The synthetic images are then used to train a
Convolutional Neural Network (CNN) object detector. In the
execution phase described in Section III-B, the robot uses the
CNN to identify the object requested by the human user.



A. RDSL: A Method for Synthetic Data Generation

RDSL uses the logos from trademark databases to generate
synthetic images that can be used to train a CNN logo
detector for use in robotics applications. The entire process
of this synthetic data generation is automated, therefore new
logos can be generated with minimal human intervention.

RDSL starts by downloading the required logo images
from trademark databases. These images are then prepro-
cessed by removing the image’s background, which for these
images can be done easily using existing image editing
tools, such as ImageMagick. The logo images were then
superimposed on shapes such as cylinders, boxes and planes.
The “UV maps” are specified for each shape to ensure that
the 2D texture is correctly mapped in such a way that the
logo is in the front of the object and hence visible to the
camera.

To increase variability in the synthetic images, so as to
improve the classifier’s ability to generalize to real images,
RDSL randomizes the following parameters:

• The number of objects of interest and distractor objects.
• Each object’s properties: Color, texture, shape, materials

(e.g., roughness and metalness), position, orientation,
dimensions, and position of the logo on the object.

• Camera position and orientation.
• Lighting properties: Number, color, and brightness.
• Floor and wall materials.
• Additional noise, blurring, and coloring.

(a) Logo with tile bump map (b) Image mask for (a)

(c) Logo with distractors (d) ART renderered image

(e) Logos on bottle shapes (f) Noise and color shift

Fig. 2: Synthetic logo images generated through RDSL

Pseudocode 1 Synthetic data generation

function GENERATE MATERIAL
Create a material from a random RGB value OR select
a random texture
Randomize material properties such as roughness and
metalness
Occasionally apply a bump map

return material
end function
for each selected logo do

Download logo
Remove logo’s background

end for
function RDSL

for the number of synthetic images required do
for 1 to 3 randomly selected logos do

Randomize logo size while maintaining aspect
ratio
m← GENERATE MATERIAL
Composite logo on m
Place m on a random shape
Randomize the shape’s position, orientation
and dimensions

end for
Randomize the camera position and have it point
towards the logos
for a random number of distractor objects do

m2← GENERATE MATERIAL
Place m2 on a random shape
Randomize the shape’s position, orientation
and dimensions while ensuring it does not
block line of sight between camera and logo

end for
Randomize the number of lights and their color
and brightness
Randomize floor and wall materials
Randomize noise, blurring, coloring
Render image to file
Render image mask to file

end for
end function

Furthermore, RDSL applies rendering techniques such as
bump mapping, which simulates bumps and wrinkles during
lighting calculations. For example a tile bump map was used
to generate Figure 2a. A few other examples of the synthetic
images generated are shown in Figures 2c-f.

In addition to the logo class label, the training data
also needs to be labeled with the pixel coordinates of a
bounding box around the logo. This was done by performing
an additional render of the logo alone as a separate mask
image as shown in Figure 2b. It is then trivial to extract the
bounding box from the mask image.

A summary of the steps followed to generate the synthetic
images is given in Pseudocode 1. RDSL can use any available
3D modelling tools, such as Autodesk 3ds Max, Unreal
Engine and Blender. It can also use any renderer.



B. Identifying Objects Through Logos
Our method is summarized in Figure 3. During the execu-

tion phase, the human user can either request for a particular
brand, such as Pepsi or Pringles, or can make a request for a
Nice Classification (NCL). The Nice Classification classifies
the goods and services the logo is used for. Examples of
Nice classes include soft drinks or potato chips. If the user
made a brand request, the brand’s Nice Classification can be
looked up from the database. For the small number of logos
used in this trial, the database can be stored onboard rather
than needing to make a query over the Internet.

Training phase

Get logo images
from trademark

database

Generate
synthetic
images

Train CNN

Execution phase

Brand request
(e.g. ”Pepsi”)

NCL request
(e.g. ”soft drink”)

Get trademark’s
NCL from database

Map NCL to possible
object locations

Go to next location

Scan with Kinect and
pass images to CNN

Does logo
match

request?

Grasp object and
return to user

No

yes

Fig. 3: Procedure for robotic object fetching with logos

In this work, we assume that the user will not provide
any directions on where the target object is located. Instead,
given a map of the environment and the target object’s
Nice Classification, the robot can narrow down the possible
locations the object may be. For example, a household map
can specify that food and drinks are located in the fridge,
soap on a certain shelf, and so on.

The robot can then navigate to each location and perform
a scan by panning the camera over the scene and passing
the RGB frames to the object detection CNN. The CNN
provides a bounding box of the logo in pixel coordinates,

which must then be converted to world coordinates (i.e.
XYZ coordinates in meters) in order to plan the grasping
motion. This conversion can be done by using a distance
measurement and the intrinsic and extrinsic matrices of the
camera.

If the user made a brand name request, the exact matching
logo must be returned. However, if the user made a Nice
Classification request, then any logo under that classification
can be returned.

IV. EXPERIMENTAL RESULTS

The purpose of our experiments are two-fold. First, we
compare the performance of the synthetic data generation
method RDSL to existing synthetic data generation methods
on benchmark test sets. Second, we test the applicability of
our fetching pipeline (Section III) on a robotic platform and
provide qualitative results.

A. Benchmark Tests

In this test, we used RDSL to generate 100 synthetic
images for each logo in the FlickrLogos-32 data set. The
logos were downloaded from TrademarkVision’s database
through their API. The randomization procedure of RDSL
is implemented as a script inside Autodesk 3ds Max 2018.
We limit the type of objects (both objects of interest and
distractor objects in Pseudocode 1) to simple geometry, such
as cylinders, boxes, etc. and only use textures from the
Autodesk libraries for generating the synthetic data. The
scanline renderer was the primary rendering engine used.
While the Autodesk Raytracer (ART) renderer is able to
produce more realistic images and is compatible with a
wider range of 3ds Max materials, it is significantly slower
to render and did not produce a noticeable effect on the
classifier performance.

The CNNs were trained using the Tensorflow [28] frame-
work. Two different object detection architectures were used,
SSD with MobileNet and Faster RCNN with VGG16. SSD-
MobileNet was trained for use in our robotics task where
recognition needs to be carried out quickly and on a com-
putationally limited platform. Faster RCNN-VGG16 was
trained for benchmarking against previous work. The models
were pre-trained on COCO and then fine-tuned for 200k steps
on either the real photos from the FlickrLogos data set or
the synthetic data generated through the process described
in Section III-A. For comparison purposes, we also list the
results as reported in [11], [24].

Training and benchmarking was done on a NVIDIA
P100 GPU. The FlickrLogos [6] test set was used for
benchmarking. It consists of 3,960 real world photos of the
logos in various settings. As expected, SSD-MobileNet is
faster, taking 198 seconds to completely classify the test set,
compared to 918 seconds required by Faster RCNN-VGG16.
Table I shows average precision values for each logo as well
as the Mean Average Precision (mAP).

SSD-MobileNet trained on RDSL generated synthetic data
outperforms previous work on logo detectors trained on
synthetic data (SynImg-32Cls and SynthLogo). Moreover,



Title Network
Architecture

Training
images

per logo

Adidas Aldi Apple Becks BMW Carls Chim Coke

mAPCorona DHL Erdi Esso Fedex Ferra Ford Fost
Google Guin Hein HP Milka Nvid Paul Pepsi

Ritt Shell Sing Starb Stel Texa Tsin Ups

RDSL (fast) SSD
MobileNet 100 Syn

44.4 49.4 19.5 62.0 80.8 49.0 43.3 22.1

48.681.5 27.6 40.7 64.3 48.2 72.9 79.3 51.7
65.8 7.0 68.5 21.5 11.9 1.0 57.6 19.2
54.2 27.3 40.9 90.1 83.6 75.9 72.9 22.8

Real (fast) SSD
MobileNet 40 Real

30.6 45.3 65.8 60.0 72.1 47.9 61.8 37.5

60.392.7 56.1 40.1 88.7 63.4 83.6 79.2 72.3
77.6 85.0 61.9 24.3 36.1 31.4 84.5 29.6
58.4 37.0 69.8 91.1 41.3 73.7 72.2 59.5

Real + RDSL
Synthetic (fast)

SSD
MobileNet

40 Real +
100 Syn

61.4 70.5 77.5 69.9 85.9 66.4 73.8 70.8

74.799.3 53.8 59.5 92.7 76.6 86.7 87.3 86.3
79.9 85.6 78.3 53.3 48.0 50.4 95.5 47.1
76.9 37.1 95.3 97.0 85.2 89.4 81.7 71.8

RDSL Faster RCNN
VGG16 100 Syn

38.8 55.3 35.8 18.8 59.4 15.5 28.7 26.8

42.918.9 37.5 55.5 65.7 40.6 64.0 35.3 79.5
47.0 4.6 50.8 46.6 9.5 14.4 74.3 21.4
50.5 31.9 33.4 71.6 80.2 53.1 69.3 39.6

Real Faster RCNN
VGG16 40 Real

52.3 81.6 77.6 69.9 79.4 66.3 81.8 71.0

78.695.9 82.0 96.3 90.1 75.5 90.2 83.8 88.7
93.5 93.2 75.7 51.3 56.0 51.9 97.6 54.4
77.9 52.7 91.1 99.4 81.7 85.3 85.1 84.8

Real + RDSL
Synthetic

Faster RCNN
VGG16

40 Real +
100 Syn

64.8 82.1 87.4 80.8 84.6 72.3 82.8 76.9

82.096.9 82.9 90.4 86.9 77.5 88.6 87.2 90.6
95.6 96.2 72.6 63.9 50.4 58.9 98.7 65.9
80.5 53.7 95.2 99.0 92.9 89.6 87.4 89.6

RealImg [11] Faster RCNN 40 Real

68.1 79.1 84.5 72.3 86.4 68.0 78.0 73.3

81.190.9 77.4 90.9 88.6 71.1 91.0 98.3 86.2
98.0 90.7 81.3 67.0 54.5 64.0 90.9 59.6
81.0 57.3 97.9 99.5 86.7 90.4 87.5 85.8

SynImg-32Cls [11] Faster RCNN 100 Syn

9.4 47.3 9.6 70.3 39.9 28.3 15.8 21.7

27.66.1 11.1 4.1 44.7 22.9 60.9 43.6 28.8
23.0 16.7 43.1 9.9 4.6 1.1 38.1 9.7
22.7 38.3 15.5 65.6 28.7 55.1 27.4 20.1

SynthLogo [24] Faster RCNN
VGG16

≈ 460 Syn Not reported 47.7

TABLE I: FlickrLogos-32 test set (3,960 images) average precision benchmark results. The first six rows are results from
our runs. The last three rows are results from the respective papers.

mixing real and our synthetic data resulted in higher perfor-
mance than using real data alone. These results are in-line
with the results from Su et al. [11] who found that mixing
synthetic data and real data can improve performance if there
is a shortage of real data.

When trained on real images, Faster RCNN-VGG16 was
more precise than SSD-MobileNet by 5.2%. Surprisingly,
Faster RCNN-VGG16 performs worse by 11% when trained
on synthetic data. A possible explanation is that the smaller
SSD-MobileNet network does not overfit to our synthetic
data. We followed the method used in [27] for avoiding
overfitting to synthetic data and first tried freezing the entire
VGG16 feature extractor network, then freezing only the first
convolution layer, but neither method improved precision.

Transfer learning (or domain adaptation) techniques, such
as in [29], [30] have previously been shown to improve the
accuracy of CNNs trained on synthetic images, but were not
implemented due to two main considerations: we wished to
compare our synthetic data (and not network architectures)
to previous work, which did not employ these techniques,

and test how well our simple strategy of using 0 real image
for training applies to situations where images are noisy.

The precision appears to depends heavily on the logo. For
SSD-MobileNet trained on our synthetic data, the Starbucks
logo has an average precision of 90.1 compared to 19.2 for
the Pepsi logo. This is also apparent for the detectors trained
on real images. It is possible that the set of test images for
certain logos are more difficult than others, or perhaps some
logos are simply more recognizable to the detector.

We performed an ablation study where we disabled certain
randomization features one at a time while keeping the
other features constant and measured the effect on the
classifier accuracy. Removing the random shapes for the logo
resulted in a mean average precision decrease of 8.4, not
having random background textures caused a decrease by
9.6, and not having bump maps caused a decrease by 1.2.
The FlickrLogos-32 dataset contains many logos on bottles,
therefore we experimented with having bottle shapes in our
synthetic data, however this did not improve performance.



B. Robot Trials

Movo [31] was used for performing a real-world object
fetching trial. Movo is a mobile robotic platform equipped
with two 6 DOF (degrees of freedom) arms, a Kinect and
a 2D planar laser sensor. The Kinect for Xbox One is a
time-of-flight sensor that provides both RGB images and
distance measurement. Movo is also equipped with two
Intel NUC5I7RYH computers, and comes ready to use with
Robot Operating System (ROS) [32] and its motion planning
framework MoveIt! [33].

To perform a scan for logos, Movo pans the Kinect over
the scene and passes the RGB frames to the object detection
CNN, which processes frames at a rate of 3 Hz. We trained
SSD-MobileNet for the logos relevant to our scenario, which
are trademarks that may appear in a typical household. The
CNN was trained on 200 synthetic images per logo. We
used an input image size of 600x600 instead of the default
300x300 as we found this performed better for small logos.
The CNN provides a bounding box of the logo in pixel
coordinates, which must then be converted to world coor-
dinates. This conversion can be done by using the distance
measurement and the intrinsic and extrinsic matrices. ROS’s
Kinect interface already performs this calculation in order to
convert the depth image from the Kinect into a point cloud,
which is a set of XYZ points. Therefore, we found it more
convenient to extract the world coordinates by calculating
the pixel’s array index in the point cloud.

A scenario is shown in Figure 4. The products used
here were soap (Dettol), chewing gum (Extra), potato crisps
(Pringles), and soft drinks (Sprite, A&W, 100Plus). In this
case, the user has asked Movo to bring food. We have placed
the objects in such a way that the logos are facing Movo.
If the logos were not visible, the objects can be detected
by finding clusters in the point cloud and then rotated
with the robot arm. After navigating to the table, Movo
performed a scan. The detections from the logo detector are
shown in Figure 4a with the trademark registration numbers.
Unfortunately, the logo detector does struggle with small
logos, in this case the Dettol logo. For each logo detected,
Movo looked up the Nice Classification and then grasped
Pringles, which is registered under class 29 (foodstuffs of
animal or vegetable origin), and is also registered under
“Snack foods, potato chips and potato crisps”.

Our logo detector also works in visually cluttered scenes
such as the one shown in Figure 1. Such scenes are often
problematic for traditional, point cloud based object detec-
tion methods. This and other scenarios may be viewed in the
accompanying video.

An issue that may cause confusion to the robot is that cer-
tain logos may be registered under certain Nice Classification
while not having products for those classes. For example,
the Mitsubishi logo is not only registered under vehicles,
but also foods and drinks. We considered cross-checking the
trademark database with Open Product Data [34], which is
an open-source database of products, but found that database
is currently quite incomplete.

(a) Movo needs to identify which object is food

(b) Movo grasps Pringles, which is trademarked under
food

Fig. 4: Trial with logo detector trained on RDSL images

V. CONCLUSION

This paper investigated the use of trademarks to improve
object recognition for fetching tasks by service robots. Rather
than manually collecting training data on objects a robot
may encounter, which is tedious and time-consuming, we
leverage existing structured data from trademark databases.
To this end, we propose an automatic data synthesizer,
RDSL, that takes trademark images as its only input and
generates synthetic labelled data for training a CNN-based
logo detector. Furthermore, during execution, we leverage
categorical information (i.e., Nice Classification) from the
trademark databases to help the robot identify the object that
the human user requested. We demonstrated the effective-
ness of our approach via experiments on benchmark logo
detection problems and a fetching task on the Kinova Movo
mobile manipulator.

There is still much room for future work, including im-
proving the quality of synthetic data generated, implementing
transfer learning techniques to resolve the domain shift, and
understanding the distribution for randomization that will be
most suitable for robotics tasks. In this paper, all random-
ization used a uniform distribution. However, it is likely that
other distributions may cover the span of real-world scenarios
better. We hope the ideas and results presented here will
encourage the exploration of other ways of alleviating a
common issue in robotics: the need for a huge amount of
relevant, labeled data.

ACKNOWLEDGMENT

We thank TrademarkVision for providing us with access
to their database.



REFERENCES

[1] H. Huttenrauch and K. S. Eklundh, “Fetch-and-carry with cero:
observations from a long-term user study with a service robot,” in
Robot and Human Interactive Communication, 2002. Proceedings.
11th IEEE International Workshop on. IEEE, 2002, pp. 158–163.

[2] M. Mast, M. Burmester, B. Graf, F. Weisshardt, G. Arbeiter,
M. Španěl, Z. Materna, P. Smrž, and G. Kronreif, “Design of the
human-robot interaction for a semi-autonomous service robot to assist
elderly people,” in Ambient Assisted Living. Springer, 2015, pp. 15–
29.

[3] A. Kasper, Z. Xue, and R. Dillmann, “The kit object models database:
An object model database for object recognition, localization and ma-
nipulation in service robotics,” The International Journal of Robotics
Research, vol. 31, no. 8, pp. 927–934, 2012.

[4] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel, “Bigbird:
A large-scale 3d database of object instances,” in Robotics and
Automation (ICRA), 2014 IEEE International Conference on. IEEE,
2014, pp. 509–516.

[5] WIPO. (2018) Nice classification. [Online]. Available: http://www.
wipo.int/classifications/nice/en/

[6] S. Romberg, L. G. Pueyo, R. Lienhart, and R. van Zwol, “Scalable
logo recognition in real-world images,” in Proceedings of the 1st
ACM International Conference on Multimedia Retrieval, ser. ICMR
’11. New York, NY, USA: ACM, 2011, pp. 25:1–25:8. [Online].
Available: http://www.multimedia-computing.de/flickrlogos/

[7] A. D. Bagdanov, L. Ballan, M. Bertini, and A. Del Bimbo, “Trademark
matching and retrieval in sports video databases,” in Proceedings of
the international workshop on Workshop on multimedia information
retrieval. ACM, 2007, pp. 79–86.

[8] J. Kleban, X. Xie, and W.-Y. Ma, “Spatial pyramid mining for logo
detection in natural scenes,” in Multimedia and Expo, 2008 IEEE
International Conference on. IEEE, 2008, pp. 1077–1080.

[9] S. Bianco, M. Buzzelli, D. Mazzini, and R. Schettini, “Deep learning
for logo recognition,” Neurocomputing, vol. 245, pp. 23–30, 2017.

[10] C. Eggert, A. Winschel, and R. Lienhart, “On the benefit of synthetic
data for company logo detection,” in Proceedings of the 23rd ACM
international conference on Multimedia. ACM, 2015, pp. 1283–1286.

[11] H. Su, X. Zhu, and S. Gong, “Deep learning logo detection with
data expansion by synthesising context,” in Applications of Computer
Vision (WACV), 2017 IEEE Winter Conference on. IEEE, 2017, pp.
530–539.

[12] TrademarkVision. (2018) Trademarkvision. [Online]. Available:
https://trademark.vision/

[13] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[14] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” arXiv
preprint arXiv:1704.04861, 2017.

[15] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[16] R. Girshick, “Fast r-cnn,” arXiv preprint arXiv:1504.08083, 2015.
[17] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-

time object detection with region proposal networks,” in Advances in
neural information processing systems, 2015, pp. 91–99.

[18] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,
and A. C. Berg, “Ssd: Single shot multibox detector,” in European
conference on computer vision. Springer, 2016, pp. 21–37.

[19] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[20] I. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu-El-Haija,
A. Kuznetsova, H. Rom, J. Uijlings, S. Popov, S. Kamali, M. Mal-
loci, J. Pont-Tuset, A. Veit, S. Belongie, V. Gomes, A. Gupta,
C. Sun, G. Chechik, D. Cai, Z. Feng, D. Narayanan, and
K. Murphy, “Openimages: A public dataset for large-scale multi-
label and multi-class image classification.” Dataset available from
https://storage.googleapis.com/openimages/web/index.html, 2017.

[21] P. Ammirato, C.-Y. Fu, M. Shvets, J. Kosecka, and A. C. Berg, “Target
driven instance detection,” arXiv preprint arXiv:1803.04610, 2018.

[22] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in Advances in neural information
processing systems, 2014, pp. 3320–3328.

[23] J. Wang and L. Perez, “The effectiveness of data augmentation in
image classification using deep learning,” Technical report, Tech. Rep.,
2017.

[24] D. M. Montserrat, Q. Lin, J. Allebach, and E. J. Delp, “Logo detection
and recognition with synthetic images,” Electronic Imaging, vol. 2018,
no. 10, pp. 337–1, 2018.

[25] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in Intelligent Robots and Systems (IROS),
2017 IEEE/RSJ International Conference on. IEEE, 2017, pp. 23–30.

[26] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil,
T. To, E. Cameracci, S. Boochoon, and S. Birchfield, “Training deep
networks with synthetic data: Bridging the reality gap by domain
randomization,” arXiv preprint arXiv:1804.06516, 2018.

[27] S. Hinterstoisser, V. Lepetit, P. Wohlhart, and K. Konolige, “On pre-
trained image features and synthetic images for deep learning,” arXiv
preprint arXiv:1710.10710, 2017.

[28] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: A system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[29] Z. Murez, S. Kolouri, D. Kriegman, R. Ramamoorthi, and K. Kim,
“Image to image translation for domain adaptation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 4500–4509.

[30] Y. Chen, W. Li, C. Sakaridis, D. Dai, and L. Van Gool, “Domain
adaptive faster r-cnn for object detection in the wild,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 3339–3348.

[31] Kinova. (2018) Movo mobile manipulator. [Online]. Available:
https://www.kinovarobotics.com/en/products/mobile-manipulators

[32] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[33] I. A. Sucan and S. Chitta. (2018) Moveit! [Online]. Available:
http://moveit.ros.org

[34] Open Knowledge Labs. (2018) Open product data. [Online].
Available: https://product.okfn.org/

http://www.wipo.int/classifications/nice/en/
http://www.wipo.int/classifications/nice/en/
http://www.multimedia-computing.de/flickrlogos/
https://trademark.vision/
https://www.kinovarobotics.com/en/products/mobile-manipulators
http://moveit.ros.org
https://product.okfn.org/

	Introduction
	Related Work
	Using Trademark Database for Fetching
	RDSL: A Method for Synthetic Data Generation
	Identifying Objects Through Logos

	Experimental Results
	Benchmark Tests
	Robot Trials

	Conclusion
	References

