
An Online and Approximate Solver for POMDPs
with Continuous Action Space

Konstantin M. Seiler, Hanna Kurniawati, and Surya P. N. Singh

Abstract— For agile, accurate autonomous robotics, it is
desirable to plan motion in the presence of uncertainty. The
Partially Observable Markov Decision Process (POMDP) pro-
vides a principled framework for this. Despite the tremendous
advances of POMDP-based planning, most can only solve
problems with a small and discrete set of actions. This paper
presents General Pattern Search in Adaptive Belief Tree (GPS-
ABT), an approximate and online POMDP solver for problems
with continuous action spaces. Generalized Pattern Search
(GPS) is used as a search strategy for action selection. Under
certain conditions, GPS-ABT converges to the optimal solution
in probability. Results on a box pushing and an extended Tag
benchmark problem are promising.

I. INTRODUCTION

Reasoned action in the presence of sensing and model
information is central to robotic systems. In all but the most
engineered cases, there is uncertainty.

The Partially Observable Markov Decision Process
(POMDP) [22] is a rich, mathematically principled frame-
work for planning under uncertainty, particularly in situations
with hidden or stochastic states [10]. Due to uncertainty,
a robot does not know the exact state, though it can infer
a set of possible states. POMDP-based planners represent
these sets of possible states as probability distributions
over the state space, called beliefs. They also represent the
non-determinism in the effect of performing an action and
the errors in sensing/perception as probability distributions.
POMDP-based planners systematically reason over the belief
space (i.e., the set of all possible beliefs, denoted as B) to
compute the best action to perform, taking the aforemen-
tioned non-determinism and errors into account.

The past decade has seen tremendous advances in the
capability of POMDP solvers. From algorithms that take
days to solve toy problems with less than a dozen states
[10] to algorithms that take only a few minutes to gener-
ate near-optimal solutions for problems with hundreds of
thousands and even continuous state space [2], [15], [21].
These planners have moved the practicality of POMDP-based
approaches far beyond robot navigation in a small 2D grid
world, to mid-air collision avoidance of commercial aircraft
(TCAS) [25], grasping [13], and non-prehensile manipulation
[9], to name but a few examples.

While some actions are inherently discrete (e.g., a switch),
in an array of applications a continuous action space is
natural (e.g., grasping, targeting, cue sports, etc.), particularly
when needing accuracy or agility. However, most solvers can

Robotics Design Lab, School of Informaton Technology and Elec-
trical Engineering, University of Queensland, QLD 4072, Australia.
{k.seiler, hannakur, spns}@uq.edu.au

only solve problems with a small and discrete set of actions
because to find the best action to perform (in the presence of
uncertainty), POMDP solvers compute the mean utility over
the set of states and observations that the robot may occupy
and perceive whenever it performs a particular action, and
then find the action that maximizes the mean value. Now,
key to the aforementioned advances in solving POMDPs is
the use of sampling to trade optimality with approximate
optimality for speed. While sampling tends to work well for
estimating the mean, finding a good estimate for the max
(or min) is more difficult. Therefore, most successful solvers
rely on sampling to estimate the mean total utility and, in so
doing, enumerate over all possible actions to find the action
that maximizes the mean value. When the action space is
continuous, such enumeration is no longer feasible.

This paper presents General Pattern Search in Adaptive
Belief Tree (GPS-ABT), an approximate and online POMDP
solver for problems with continuous action spaces, assuming
the action space is a convex subset of Rn. GPS-ABT allevi-
ates the difficulty of solving POMDP with continuous action
using direct search methods, in particular the General Pattern
Search (GPS). Unlike gradient descent approaches, the most
common method for search in continuous space, GPS does
not require derivatives, which are difficult to have when the
objective function is not readily available and needs to be
estimated, as is the case with solving POMDPs. GPS-ABT
is built on top of Adaptive Belief Tree (ABT) [15], a recent
online POMDP planner. GPS-ABT uses GPS to identify a
small set of candidate optimal actions, and ABT to find the
best action among the candidate actions and estimate the
expected value of performing the candidate actions. GPS-
ABT computes an initial policy offline, and then improves
this policy during runtime, by interleaving candidate optimal
actions identification and value estimation. GPS-ABT has
been integrated with an open source software implementation
of ABT (TAPIR, http://robotics.itee.uq.edu.
au/˜tapir)[11] and is available for download.

Under certain conditions, GPS-ABT converges to the
optimal solution in probability. Let Q(b,a) be the expected
value of performing action a from belief b∈B and continuing
optimally afterwards. Suppose R∗(b0) is the set of beliefs
reachable from the given initial belief b0 under the optimal
policy. When Q(b, .) is continuous with a single maximum at
each belief b ∈ R∗(b0), GPS-ABT converges to an optimal
solution in probability. Otherwise, GPS-ABT converges to
the local optimal solution in probability.

The remainder of this paper is organised as follows: An
introduction to POMDP and solution strategies is given in

http://robotics.itee.uq.edu.au/~tapir
http://robotics.itee.uq.edu.au/~tapir

Section II. The proposed GPS-ABT algorithm is detailed in
Sections III and IV. Convergence to the optimal solution
is proven in Section V. Simulation results are presented in
Section VI. The paper concludes with Section VII.

II. RELATED WORK
A. POMDP Background

A POMDP model is a tuple 〈S,A,O,T,Z,R,b0,γ〉, where
S is the set of states, A is the set of actions, and O is the set
of observations. At each step, the agent is in a state s ∈ S,
takes an action a ∈ A, and moves from s to an end state
s′ ∈ S. To represent uncertainty in the effect of performing
an action, the system dynamic from s to s′ is represented as
a conditional probability function T (s,a,s′) = f (s′|s,a). To
represent sensing uncertainty, the observation that may be
perceived by the agent after it performs action a and ends at
state s′, is represented as a conditional probability function
Z(s′,a,o) = f (o|s′,a). The conditional probability functions
T and Z may not be available explicitly. However, one can
use a generative model, which is a black box simulator that
outputs an observation perceived, reward received, and next
state visited when the agent performs the input action from
the input state.

At each step, a POMDP agent receives a reward R(s,a), if
it takes action a from state s. The agent’s goal is to choose a
suitable sequence of actions that will maximize its expected
total reward, while the agent’s initial belief is denoted as b0.
When the sequence of actions has infinite length, we specify
a discount factor γ ∈ (0,1), so that the total reward is finite
and the problem is well defined.

A POMDP planner computes an optimal policy that max-
imizes the agent’s expected total reward. A POMDP policy
π : B→A assigns an action a to each belief b∈B, where B is
the belief space. A policy π induces a value function V (b,π)
which specifies the expected total reward of executing policy
π from belief b, and is computed as

V (b,π) = E[
∞

∑
t=0

γ
tR(st ,at)|b,π] (1)

To execute a policy π , an agent executes action selection
and belief update repeatedly. For example, if the agent’s
current belief is b, it selects the action referred to by a =
π(b). After the agent performs action a and receives an
observation o according to the observation function Z, it
updates b to a new belief b′ given by

b′(s′) = τ(b,a,o) = ηZ(s′,a,o)
∫

s∈S
T (s,a,s′)ds (2)

where η is a normalization constant.
An offline POMDP planner computes the policy prior

to execution, whilst an online POMDP planner interleaves
policy generation and execution. Suppose, the agent’s current
belief is b. Then, an online planner computes the best action
π∗(b) to perform from b and executes the action. After the
agent performs action π∗(b) and receives an observation o
according to the observation function Z, it updates b to a new
belief b′ based on Section II-A. The agent then computes
the best action π∗(b′) to perform from b′, and repeats the
process.

B. Related POMDP-based Planners

Key to the tremendous advances in both offline and
online POMDP-based planning is the use of sampling to
trade optimality with approximate optimality in exchange
for speed. Sampling based planners reduce the complexity
of planning in the belief space B by representing B as a set
of sampled beliefs and planning with respect to this set only.

In offline planning, the most successful approach is the
point-based approach [17], [23]. Point-based approach rep-
resents the belief space with a representative set of sampled
beliefs, and generate a policy by iteratively performing
Bellman backup on V at the sampled beliefs rather than the
entire belief space. Although these solvers were originally
designed for discrete state, action, and observation spaces,
several pieces of work have extended point-based approach
to continuous state space [2], [5], [19] and continuous
observation space [3], [8], [19]. A few pieces of work [14],
[19] have also extended point-based approach to handle
continuous action space under limited conditions.

Many successful online POMDP-based planners rely on
sampling, e.g., [7], [15], [20], [21], [24]. Some of these
solvers [15], [21], [24] can handle large and continuous state
and observation spaces. However, continuous action space
remains a challenge. The reason is, these solvers rely on
sampling to construct a more compact representation of the
large and continuous state and observation spaces. Since the
optimal value function is computed as expectation over state
and observation spaces, one can use results from probability
theory to ensure that even uniform random sampling can
compute a good estimate on the expected value over the
state and observation space. However, the value function is
computed as maximum over the action space. In general,
random sampling cannot guarantee convergence to a good
estimate of the maximum operator, and hence cause sig-
nificant difficulties in solving POMDP problems where the
action space is large or continuous.

Aside from the aforementioned approaches, several
POMDP solvers for problems with continuous state, action,
and observation spaces have been proposed, e.g., [4], [16],
[18]. The work in [4] restricts beliefs to Gaussian distribu-
tion. The work in [16] restricts to find optimal solution in
a class of policies. And the work in [18] considers only the
most likely observation during planning, constructing a path
rather than a policy, and regenerate a new path whenever
the perceived observation is not the same as the most likely
observation. In this paper, we propose a general online
POMDP solver for problems with large and continuous
action spaces taking into account the different observations
an agent may perceive, and without restricting the type of
beliefs that the agent may have.

III. OVERVIEW OF GPS-ABT
Similar to ABT, GPS-ABT constructs an initial policy

offline and continues improving the policy during runtime.
Algorithm 1 presents the overview of the proposed online
POMDP solver. GPS-ABT embeds the optimal policy in a
belief tree. Let T denote the belief tree. Each node in T

Algorithm 1 GPS-ABT (b0)

PREPROCESS (OFFLINE)
GENERATE-POLICY(b0).
b = b0.

RUNTIME (ONLINE)
while running do

while there is still time do
IMPROVE-POLICY(T , b).

a = Get best action in T from b.
Perform action a.
o = Get observation.
b = τ (b, a, o).
t = t +1.

represents a belief. For writing compactness, the node in T
and the belief it represents are referred to interchangeably.
The root of T represents the initial belief b0. Each edge bb′
in T is labelled by a pair of action and observation a–o. An
edge bb′ with label a–o means that when a robot at belief b
performs action a and perceives observation o, its next belief
will be b′, i.e., b′ = τ(b,a,o) where b,b′ ∈ B, a ∈ A, and
o ∈ O. The function GENERATE-POLICY in Algorithm 1
constructs the initial T , while IMPROVE-POLICY further
expands T and improves the policy embedded in it. The
policy πT (b) from b that GPS-ABT embeds in T is then
the action that maximizes the current estimate, i.e.,

πT (b) = argmax
{a∈A:N(b,a)>0}

Q̂(b,a) . (3)

where N(b,a) is the number of edges from b whose action
component of its label is a and Q̂(b,a) denotes the estimated
Q-value. Q-value Q(b,a) is the value of performing action
a from belief b and continuing optimally afterwards, i.e.,
Q(b,a) = R(b,a)+ γ ∑o∈O τ(b,a,o)maxa′∈A Q(τ(b,a,o),a′).

When the action space A is continuous, most online
POMDP solvers [15], [21], [24] discretize A and search for
the best action to perform among this set of discrete actions.
Instead of limiting the search to a pre-defined set of discrete
actions, GPS-ABT searches over a continuous action space.

The most common method to search a continuous space
is the Gradient Descent approach. However, this approach
cannot be applied here because the objective function Q(b, .)
is not readily available for evaluation. Instead, in each step its
value can only be estimated by the currently available Q̂(b, .)
which only converges towards Q(b, .) as the number of
search iterations increases. The estimates given by the Q̂(b, .)
functions are far too crude to calculate a meaningful estimate
for a derivative using finite differences. Instead, GPS-ABT is
based on direct search methods that don’t require derivatives.

In particular, GPS-ABT uses the Generalised Pattern
Search (GPS) approach to identify a small subset of A as
candidates for the best action from a belief b, and interleaves
this identification step with the fast value estimation of ABT
[15]. The details on how GPS-ABT uses GPS, constructs
the belief tree T , and estimates the value function to find

(s0, a0, o0, r0)

(s1, a2, o2, r2)

...

...

(sn+1,−,−, rn+1)

b0
s0

a0

o0
s1

a1
o1
...

... ...

sn+1

h ∈ H T

...
...

Fig. 1: Illustration of an association between an episode
h ∈ H and a path in the belief tree T .

a good approximation to the optimal policy is presented in
Section IV.

GPS-ABT will converge to the optimal policy in proba-
bility whenever Q(b, .) is a uni-modal function on A, i.e.,
it has only one point which is a maximum of an open
neighbourhood around itself, for which the utilised GPS
method converges to a maximum. When the Q function
is multi-modal in A, GPS-ABT will converge to a local
maximum. The convergence proof is presented in Section V.

IV. DETAILS OF GPS-ABT

A. Constructing T and Estimating the Value Function

To construct the belief tree T and estimate the value
function, GPS-ABT uses the same method as ABT. We
present an overview of the strategies here, but more details
on ABT are available in [15].

GPS-ABT samples beliefs using a generative model, sam-
pling sequences of states, actions, observations, and rewards,
called episodes, and maintains the set of sampled episodes,
denoted as H. To sample an episode, GPS-ABT samples
a state s0 ∈ S from the initial belief b0. It then selects an
action a0 ∈ A and calls a generative model with state s0
and action a0 to receive a new state s1, observation o0 and
reward r0. The quadruple (s0,a0,o0,r0) is then added as first
element into the episode and the process repeats using s1
as initial state for the next step. Once no further action is
to be selected, (sn,−,−,rn) is added as final element to the
episode where rn denotes the immediate reward for being at
state sn. Note that to select an action, GPS-ABT modifies
ABT by first selecting a set of candidate optimal actions
using GPS, as detailed in Section IV-B.

When an episode h is sampled, its elements are associated
with the belief tree T in the following way: the first element
(s0,a0,o0,r0) is associated with the root of the tree to
represent b0. The next element of h is associated with
the vertex b1 where the edge from b0 to b1 is labelled
(a0,o0). The remaining elements are associated with vertices
of T traversing the tree the same way. The process of
associating elements with the belief tree is illustrated in
Fig. 1. Through this association process, each episode as
a whole is associated with a path φ in T . As there can
be many episodes that are associated with the same path

(i.e. all episodes that have the same sequence of actions and
observations), the set of episodes in H that are associated
with a particular path φ in T is denoted Hφ ⊆ H. Thus, a
belief b contained in T is represented by a set of particles, the
sampled states s of the episode elements that are associated
with its vertex.

Algorithm 2 presents a pseudo-code of how GPS-ABT
samples an episode and associates it with the belief tree T .

Algorithm 2 GPS-ABT: SAMPLE EPISODES(bstart)

1: b = bstart ; doneMode = UCB
2: Let l be the depth level of node b in T .
3: Let s be a state sampled from b.

The sampled state s is essentially the state at the lth

quadruple of an episode h′ ∈ H.
4: Initialize h with the first l elements of h′.
5: while γ l > ε AND doneMode == UCB do
6: Aactive,b = GENERAL-PATTERN-SEARCH(b).
7: A′ = {actions that labelled the edges from b in T }.
8: if Aactive,b\A′ = /0 then
9: a = UCB-ACTION-SELECTION(T , b).

10: else
11: a = Sample uniformly at random from Aactive,b\A′.

12: doneMode = Default.
13: (o,r,s′) = GenerativeModel(s, a).
14: Insert (s,a,o,r) to h.
15: Add hl .s to the set of particles that represent belief

node b and associate b with hl .
16: b = child node of b via an edge labelled a-o. If no

such child exist, create the child.
17: s = s′; l = l +1.
18: if doneMode == Default then
19: r = Estimate the value of b using DEFAULT-POLICY.
20: Insert (s,−,−,r) to h.
21: Add hl .s to the set of particles that represent belief node

b and associate b with hl .
22: UPDATE-VALUES(T , h)
23: Insert h to H.

Similar to ABT, GPS-ABT estimates Q(b,a) as
Q̂(b,a) =

1∣∣H(b,a)
∣∣ ∑

h∈H(b,a)

V (h, l) (4)

where H(b,a) ⊆ H is the set of all episodes associated with
a path in T that starts from b0, passes through b and then
follows action a, l is the depth level of b in T , and V (h, l)
is the value of an episode h starting from the lth element.
V (h, l) is computed as

V (h, l) =
|h|
∑
i=l

γ
i−lR(hi.s,hi.a) (5)

where γ is the discount factor and R is the reward function. It
may seem odd that Eqs. (4) and (5) can approximate Q(b,a).
It turns out one can ensure that as the number of episodes in
H(b,a) increases, Q̂(b,a) converges to Q(b,a) in probability,
if actions for sampling new episodes are selected using the
UCB1 algorithm [1].

...

Fig. 2: Illustration of a tree structure that maintains the sets
of candidate optimal actions.

The UCB1 algorithm [1] selects an action according to

a = argmax
a∈A

(
Q̂(b,a)+ c

√
log(|Hb|)
|H(b,a)|

)
(6)

where Hb ⊆H denotes the set of episodes associated with b
and H(b,a)⊆Hb is the set of episodes that selects action a∈A
during the step associated with b. c is a scalar factor that
determines the ratio between exploration and exploitation.

Note that Eq. (6) is only applicable when all actions a∈ A
have been tried for belief b in the past and thus H(b,a) is non-
empty for all a ∈ A. Thus, while there are untried actions,
Eq. (6) is not used and instead an untried action is selected
at random, i.e., an action is drawn from the set{

a ∈ A : |H(b,a)|= 0
}
. (7)

This implies that the set of actions to be considered in each
step must be finite since otherwise UCB1 would forever
select random untried actions instead of biasing the search
towards parts of the tree where the value function is high.

B. General Pattern Search

At the core of a GPS method is a stencil which is a small
set of points s⊆ A to be evaluated. Before the search begins,
the stencil is initialised to its base form s0 ⊆ A. The search
then continues by evaluating the objective function for each
of the points in s0. Depending on comparisons of function
values, the stencil is transformed into s1 for the next step. The
stencil transformations are often based on translations and/or
scaling in size. Once a new stencil is generated, the search
process repeats with the new stencil until a convergence
criterion is met.

Various GPS methods can be used. Two methods used
within this work are Golden Section Search for one di-
mensional search problems and Compass Search for higher
dimensional searches. These two methods are detailed in
Appendices A and B.

Because the objective function of the maximisation pro-
cess, Q(b, .), is unknown, GPS-ABT uses the available
estimates Q̂(b, .) to perform a general pattern search. The es-
timates for Q̂(b, .) are pointwise converging towards Q(b, .),
but because the estimates are constantly updated throughout
the search, the decisions made by a GPS algorithm must
be revised each time the outcome of the relevant estimates
change.

In order to accommodate these changes in the objective
function, the state of the search is maintained in a tree
structure (illustrated in Fig. 2). There exists one GPS-tree Tb
for each belief b contained in the belief tree T . Each vertex
v ∈ Tb contains a stencil sv. The edges leaving a vertex are
labelled by the actions ai ∈ sv and lead to a vertex containing
the stencil for the case that

ai = argmax
a∈sv

Q(b,a) . (8)

If within a vertex an action a ∈ sv fulfils Eq. (8), the
corresponding child is denoted the active child. In the rare
case that several actions achieve the maximum, one of them
is selected arbitrarily to be the sole active child.

While the tree Tb is in theory infinite, in practise it is
bounded by several factors. First, new child vertices for a
vertex v are only created if they are active and there is a
sufficient estimate for all values of Q̂(b,a),a∈ sv. Thus, only
those parts of the search tree are created that are actually
needed. Second, the search is limited by a convergence
criterion such that no further children are created if the search
converged sufficiently. In case of the Golden Section Search,
the interval size is lower bounded whereas for Compass
Search the radius is used as an indicator. Last, there is also
an artificial limit on the maximal depth of the tree such that

depth(Tb)≤ logcdepth
(|Hb|) =

ln(|Hb|)
ln(cdepth)

(9)

where cdepth is an exploration constant. A new child node is
only created if it doesn’t violate Eq. (9). This limit prevents
the tree from growing too fast in the beginning and results in
more time being spent refining the relevant estimates Q̂(b, .).

The active children define a single path in Tb from the
root to one of the leaves by starting at the root and always
following the edge to the active child until a leave is reached.
The set of actions that are associated with a vertex on
the active path is denoted Aactive,b ⊆ A, the set of active
actions for the belief b. Algorithm 3 contains pseudo-code
to compute the set Aactive,b.

When sampling new episodes, action selection is per-
formed based on restricting UCB1 to the set of active actions.
Thus, Eq. (6) becomes

a = argmax
a∈Aactive,b

(
Q̂(b,a)+ c

√
log(|Hb|)
|H(b,a)|

)
(10)

Similarly, in order to follow the policy contained in the
belief tree T , the action a∈ Aactive,b with the largest estimate
Q̂(b, .) is executed. Thus, Eq. (3) becomes

a = argmax
{a∈Aactive,b:|H(b,a)|>0}

Q̂(b,a) . (11)

Note that this method accommodates well for hybrid
action spaces where the action space is the union of a
continuous space Acont and a finite space Adisc. Then the
patters search operates on Acont as above and actions Adisc are
always considered active when evaluating Eqs. (10) and (11).
An example of such a hybrid action space is shown in the
continuous tag problem in Section VI-B.

Algorithm 3 SAMPLE GENERAL-PATTERN-SEARCH(b)

1: active = /0
2: v = Tb
3: hasMore = TRUE
4: while hasMore do
5: active = active∪ sv
6: amax = argmaxa∈sv

Q̂(b,a)
7: if v has child for amax then
8: v = child for amax
9: else

10: if child creation condition for amax ok then
11: add child for amax to Tb
12: v = child for amax
13: else
14: hasMore = FALSE
15: return active

V. CONVERGENCE TO OPTIMAL SOLUTION
It is shown in [15], [21], [12], that ABT with a finite action

space A converges towards the optimal policy in probability.
The proof is based on an induction on the belief tree T going
backwards from a fixed planning horizon. The planning
horizon defines the maximum depth of T and induction starts
at the leaves of T . For a belief b associated with a leave of
the belief tree, the value function V̂ ∗(b) converges towards
V ∗(b) as it depends only on the immediate reward received
for states s ∈ support(b) causing convergence in probability
as new episodes that reach b are sampled.

Using a similar argument, it is then shown that Q-value
estimates and value estimates Q̂(b, .) and V̂ ∗(b) converge
towards the optimal functions for any belief b ∈ T in proba-
bility provided that the value functions of all its children are
known to converge.

The proof relies on the observation that the bias term of
UCB1 (i.e. the second summand in Eq. (6)) ensures that each
action will be selected infinitely often at each belief almost
certainly, thus guaranteeing the necessary convergence. For
full details of the proof for ABT with finite action space,
please see the references above.

To extend this proof to GPS-ABT, it is necessary to ensure
that the induction step still applies. It needs to be shown that
the value function V̂ ∗(b) converges in probability if all its
children’s value functions Q̂(b, .) converge whenever they are
reached by episodes infinitely often.

Lemma 1: V̂ ∗(b) converges towards V ∗(b) if the used
GPS method (Compass Search or Golden Section Search)
converge towards the maximum when applied to the Q-value
Q(b, .).

Proof: Note that for true convergence, the convergence
criterion needs to be shown for both the GPS method and
the tree Tb.

Our proof is by induction on Tb. Let λv,n be the relative
frequency a vertex v ∈ Tb has been active during an UCB1
selection step. That is

λv,n =
mv,n

n
(12)

where mv,n is the number of times v was part of the active
path during the first n UCB1 steps.

To start the induction, let v be the root of Tb. Then λv,n = 1
for all n since the root is always part of the active path. For
the induction step, however, it is sufficient to assume that
λv,n does not converge to zero for n→ ∞.

Since the relative frequency does not converge to zero,
the actions a ∈ sv contained in the stencil of v are each
active infinitely often. Thus, they will be selected by UCB1
infinitely often. Moreover, they will be chosen by UCB1 at
least as often as dictated by the bias term of Eq. (6). (note
that the bias term dictates a guarantee for the action to be
chosen with a logarithmic frequency whereas λv,n guarantees
the action to be available for selection (active) with a linear
frequency).

If there is a single best element amax in the stencil
maximising Q(b, .), then, due to convergence, amax also
maximises Q̂(b, .) all but finitely many times. Thus, after
finitely many steps the ‘correct’ child vc stays active indef-
initely. This implies that the convergence behaviour of λvc,n
is identical to that of λv,n and the induction continues by
considering vc.

In cases where several actions a1, ...,ak ∈ s, k > 1 max-
imise Q(b, .), the convergence to a single active child is
not guaranteed. Instead it can happen that different children
belonging to the maximising actions a1, ...,ak are set active
infinitely often. Then there must be at least one child vc
where λvc,n does not converge to zero. This is guaranteed
because

λv,n = ∑
vc child of v

λvc,n . (13)

Thus, the induction continues using all children vc where
λvc,n does not converge to zero.

Note that in cases where several actions maximise Q(b, .),
the behaviour of the underlying GPS is also arbitrary. The
convergence of the GPS, however, is guaranteed no matter
which of the maximising actions the stencil transformation
is based on. Let Φconv be the set of all paths that could
be chosen by the GPS applied to the true Q-value function
Q(b, .). The above induction implies that all vertices v ∈ Tb
where λv,n does not converge to zero are part of a path in
Φconv. This completes the proof.

VI. SIMULATION RESULTS

Two simple applications that illustrate GPS-ABT are pre-
sented here.

A. Push Box

Push Box is a problem where a robot has to manoeuvre a
box into a goal region solely by bumping into it and pushing
it away (loosely analogous to air hockey). The robot and the
box are considered to be discs with a diameter of 1 unit
length, thus their state can be fully described by the location
of the center point. Subsequently, the continuous state space
S consists of four dimensions, two for the coordinates (xr,yr)
that represent the robot’s position as well as a second set
of coordinates (xb,yb) that represents the coordinates of the

box. The action space is the two dimensional interval A =
[−1,1]× [−1,1]⊆ R2.

In case the robot does not touch the object during the
move, the transition function T is defined as

T
(
(xr,yr,xb,yb),(xa,ya)

)
= (xr + xa,yr + ya,xb,yb) (14)

for (xr,yr,xb,yb) ∈ S and (xa,ya) ∈ A.
If the robot touches the box at any point during its move

along the straight line from (xr,yr) to (xr + xa,yr + ya), the
box is pushed away. The push is calculated as(

∆xb
∆yb

)
= (1+ rs)cs

(
~n
(

xa
ya

))(
~n+

(
rx
ry

))
, (15)

where ~n is the unit vector from the center of the robot to
the center of the box at the moment of contact. It defines
the direction of the push. The distance of the push is set
proportional to the robot’s speed in the direction of ~n as
represented by the scalar product ~n

(xa
ya

)
. The factor cs is a

constant that defines the relative intensity of a push. The
factors rs, rx and ry are random numbers to represent the
move uncertainty of a push. These dynamics result in a push
that is similar the dynamics of the game of ‘air hockey’.

The robot has a bearing sensor with a coarse resolution to
localise the current position of the box. The bearings from
0◦to 360◦are assigned to 12 intervals of 30◦each. In addition,
the robot receives information about whether it pushed the
box or not. Thus, an observation is calculated by

o = floor
(

atan2(yb− yr,xb− xr)+ ro

30

)
+ p (16)

where ro is a random number representing measurement
uncertainty (the sum of the angles in understood to overflow
and only create values between 0◦and 360◦. p is either 0 or
12 depending on whether a push of the box occurred or not.
Thus, the total observation space O consists of 24 possible
observations.

The reward function R awards a reward of 1000 when the
box reaches the goal and a penalty -10 for every move as
well as -1000 if either the box of the robot are on forbidden
coordinates (obstacles). Any state where either the box or
the robot is on a forbidden field or the box reached the goal
is considered a terminal state.

The trade-off of the push box problem is that greedy
actions (long shots towards the goal) are dangerous due to
the uncertainty in the transition function (rs, rx and ry) as
well as an uncertainty about the knowledge of the position
of the box. Careful actions on the other hand spend more time
moving around to localise the box and perform smaller, but
less risky pushes. It was indeed observed that good solutions
required several pushes in order to avoid collisions.

The environment map that was used during simulations is
shown in Fig. 3 and the parameters for Eqs. (15) and (16)
were as follows:
• cs = 5
• rs, rx and ry are drawn from a truncated normal distri-

bution with standard deviation 0.1, truncated at ±0.1.

0 5 10
0

5

10

0 5 10
0

2

4

6

Fig. 3: Left: the map used for Push Box simulations. The
robot (red) starts at a fixed position whereas the box (blue)
is placed anywhere within the light blue region at random.
The goal is marked green. Gray areas are forbidden. Right:
the map used for Tag simulations. The initial positions of
the robot and the target are chosen at random.

Algorithm |A| cdepth horizon mean reward
ABT 9 3 -79.3
ABT 36 3 -5.0
ABT 81 3 -73.6

GPS-ABT 5 3 238.2
GPS-ABT 7 3 223.0

ABT 9 4 -36.0
ABT 36 4 49.3
ABT 81 4 -61.2

GPS-ABT 5 4 146.1
GPS-ABT 7 4 99.6

TABLE I: Simulation results for the Push Box problem.
Normal ABT is by discretising the action space A into finitely
many actions. The parameter cdepth is explained in Eq. (9).
The horizon denotes the planning horizon.

• ro is drawn from a truncated normal distribution with
standard deviation 10, truncated at ±10.

The simulations were performed using the online planning
feature of ABT. Thus, the initial policy creation phase was
limited to 1 second and before each step the algorithm was
allowed another second to refine the policy. Due to this high
frequency the planning horizon had to be limited. Setting of
3 and 4 steps have been tested.

In order to compare the effect of planning in continuous
action space compared to discretising A, the action space
was discretised into 9, 36 and 81 actions respectively to
test the performance achieved by normal ABT. For GPS-
ABT different settings for cdepth in Eq. (9) were tested. All
simulations were run single-threaded on an Intel Xeon CPU
E5-1620 with 3.60GHz and 16GB of memory.

Statistical results of the simulation are presented in Table I.
It can be seen that GPS-ABT tends to perform better than
ABT with a discretised action space. This is not very
surprising due to the advantage gained by being able to shoot
the box towards the goal from larger distances with higher
precision. When the action space is discretised, either not
enough actions are available to perform the moves that are
required, or the search tree branches too far to be explored
sufficiently in the limited time that available for planning.
It seems that the enough/not too many actions trade-off is
met best by the variant using 36 actions. This, however, is
a problem specific number and even in this case ABT is
out-performed by all tested variations of GPS-ABT.

Algorithm |A| cdepth εtag mean reward 99% confidence
ABT 3+1 0.5 -14.3 ± 0.5
ABT 4+1 0.5 -9.3 ± 0.4
ABT 6+1 0.5 -9.9 ± 0.3
ABT 10+1 0.5 -9.5 ± 0.4
ABT 20+1 0.5 -13.7 ± 0.4
ABT 50+1 0.5 -14.4 ± 0.5

GPS-ABT 4 0.5 -9.3 ± 0.5
GPS-ABT 5 0.5 -9.2 ± 0.5
GPS-ABT 6 0.5 -9.1 ± 0.6
GPS-ABT 7 0.5 -8.2 ± 0.6

TABLE II: Simulation results for the Tag problem. Normal
ABT discretises the action space A into finitely many actions
plus the TAG action.

B. Continuous Tag

The tag problem is a widely used benchmark problem for
POMDP solvers. The usual version has, however, a discrete
action space A with only 5 actions. Thus, a continuous ver-
sion was derived to test the performance overhead required
for GPS-ABT in relation to ABT with discretised actions.
The objective for the robot is to get itself close enough to a
moving target and then ‘tag’ the target.

The state space S contains four dimensions to encode the
robot’s position (xr,yr) as well as the target’s position (xt ,yt).
The action space A= [0,360)∪{TAG} consists of all angular
directions the robot can move into and an additional TAG
action. In each step the robot moves 1 unit length into the
chosen direction while the target moves away from the robot.
The target moves 1 unit length into the direction away from
the robot but varies its direction within a range of 45◦at
random. The robot also has an unreliable sensor to detect the
target: if the target is within ±90◦ the target is detected with
probability p= 1− α

90◦ . The observation received is binary an
only assumes the values ‘detected’ and ‘not detected’. Instead
of moving the robot can decide to attempt to TAG the target.
If the distance between the robot and the target is smaller
εtag, a reward of 10 is received and the simulation ends,
otherwise a penalty of -10 is received and the simulation
continues. In addition, each move receives a penalty of -1.
The environment map used for the simulations is depicted in
Fig. 3.

It can be seen from the results that while GPS-ABT
does not have a big advantage over ABT with discretised
actions, it is also not penalised for its overhead and non-
exhaustive search of the action space. In addition, with
GPS-ABT it is not necessary to fix a problem specific
discretisation resolution to balance the trade-off between a
sufficient amount actions and a small enough action space
to avoid excessive branching.

VII. SUMMARY

The past decade has seen tremendous advances in the
capability of POMDP solvers, moving the practicality of
POMDP-based planning far beyond robot navigation in a
small 2D grid world, into mid-air collision avoidance of
commercial aircraft (TCAS) [22], grasping [10], and non-
prehensile manipulation [7], to name but a few examples. De-
spite such tremendous advancement, most POMDP solvers

can only solve problems with a small and discrete set of
actions. Most successful solvers rely on sampling to estimate
the mean total utility and enumerate over all possible actions
to find the action that maximizes the mean value, which is
infeasible when the action space is continuous.

This paper presents GPS-ABT, an approximate and online
POMDP solver for problems with continuous action spaces,
assuming the action space has a metric space. It interleaves
Generalized Pattern Search with ABT to find the best actions
among the set of candidate actions and estimate the Q
values. When Q(b, .) is continuous with a single maximum at
each belief b ∈R∗(b0), GPS-ABT converges to the optimal
solution in probability. Otherwise, GPS-ABT converges to
the local optimal solution in probability.

REFERENCES

[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine Learning, 47(2-3):235–256, May
2002.

[2] H. Bai, D. Hsu, W. Lee, and A. Ngo. Monte Carlo Value Iteration for
Continuous-State POMDPs. In WAFR, 2010.

[3] H. Bai, D. Hsu, and W. S. Lee. Integrated perception and planning in
the continuous space: A POMDP approach. In RSS, Berlin, Germany,
June 2013.

[4] J. Berg, S. Patil, and R. Alterovitz. Efficient approximate value
iteration for continuous gaussian POMDPs. In AAAI, 2012.

[5] E. Brunskill, L. Kaelbling, T. Lozano-Pérez, and N. Roy. Continuous-
state POMDPs with hybrid dynamics. In International Symposium on
Artificial Intelligence and Mathematics, 2008.

[6] I. Griva, S. Nash, and A. Sofer. Linear and Nonlinear Optimization:
Second Edition. Society for Industrial and Applied Mathematics, 2009.

[7] R. He, E. Brunskill, and N. Roy. PUMA: planning under uncertainty
with macro-actions. In AAAI, 2010.

[8] J. Hoey and P. Poupart. Solving POMDPs with continuous or large
discrete observation spaces. In Proceedings of the 19th International
Joint Conference on Artificial Intelligence, IJCAI, pages 1332–1338,
San Francisco, CA, USA, 2005. Morgan Kaufmann Publishers Inc.

[9] M. Horowitz and J. Burdick. Interactive Non-Prehensile Manipulation
for Grasping Via POMDPs. In ICRA, 2013.

[10] L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in
partially observable stochastic domains. AI, 101:99–134, 1998.

[11] D. Klimenko and J. S. and. H. Kurniawati. TAPIR: A software
toolkit for approximating and adapting POMDP solutions online.
Submitted to ACRA2014, http://robotics.itee.uq.edu.
au/˜hannakur/papers/tapir.pdf.

[12] L. Kocsis and C. Szepesvri. Bandit based monte-carlo planning. In In:
ECML-06. Number 4212 in LNCS, pages 282–293. Springer, 2006.

[13] M. Koval, N. Pollard, and S. Srinivasa. Pre- and post-contact policy
decomposition for planar contact manipulation under uncertainty. In
RSS, Berkeley, USA, July 2014.

[14] H. Kurniawati, T. Bandyopadhyay, and N. Patrikalakis. Global motion
planning under uncertain motion, sensing, and environment map.
Autonomous Robots: Special issue on RSS 2011, 30(3), 2012.

[15] H. Kurniawati and V. Yadav. An online POMDP solver for uncertainty
planning in dynamic environment. In ISRR, 2013.

[16] A. Y. Ng and M. Jordan. PEGASUS: A policy search method
for large MDPs and POMDPs. In Proceedings of the Sixteenth
conference on Uncertainty in artificial intelligence, pages 406–415.
Morgan Kaufmann Publishers Inc., 2000.

[17] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An
anytime algorithm for POMDPs. In IJCAI, pages 1025–1032, 2003.

[18] R. Platt, R. Tedrake, T. Lozano-Perez, and L. Kaelbling. Belief space
planning assuming maximum likelihood observations. In RSS, 2010.

[19] J. Porta, N. Vlassis, M. Spaan, and P. Poupart. Point-Based Value
Iteration for Continuous POMDPs. JMLR, 7(Nov):2329–2367, 2006.

[20] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. Online planning
algorithms for POMDPs. JAIR, 32:663–704, 2008.

[21] D. Silver and J. Veness. Monte-Carlo Planning in Large POMDPs. In
NIPS, 2010.

[22] R. Smallwood and E. Sondik. The optimal control of partially observ-
able Markov processes over a finite horizon. Operations Research,
21:1071–1088, 1973.

[23] T. Smith and R. Simmons. Point-based POMDP algorithms: Improved
analysis and implementation. In UAI, July 2005.

[24] A. Somani, N. Ye, D. Hsu, and W. S. Lee. DESPOT: Online POMDP
planning with regularization. In NIPS, pages 1772–1780, 2013.

[25] S. Temizer, M. J. Kochenderfer, L. P. Kaelbling, T. Lozano-Pérez, and
J. K. Kuchar. Collision avoidance for unmanned aircraft using markov
decision processes. In Proc. AIAA Guidance, Navigation, and Control
Conference, 2010.

APPENDIX

A. Golden Section Search
The Golden Section Search method is applicable for uni-modal,

one-dimensional objective functions f . The stencil of Golden Sec-
tion Search contains only two points, thus the stencil in step i has
the form si = {ai,bi}.

Given a search interval (l,u) ⊆ R, the initial stencil is set to
a0 = φ l + (1−φ) and bi = (1−φ) l + φu, where φ denotes the
inverse of the golden ratio: φ =

√
5−1
2 .

New stencils are created by setting ai+1 = ai and bi+1 = (1+
φ)ai−φbi if f (ai)> f (bi), otherwise it is set as ai+1 = (1+φ)bi−
φai and bi+1 = bi.

Effectively the stencil splits the search interval into three sub-
intervals. During each step one of the two outer intervals is
identified as a region that cannot contain the optimum and is
eliminated. A new point is added to split the remaining intervals
into three parts again and the process repeats. Convergence of the
method follows directly from the assumption that f is uni-modal.

B. Compass Search
Compass search is a GPS method that is applicable to multi-

dimensional spaces. The stencil used by compass search contains
2n+ 1 points where n is the number of dimensions of the search
space. The stencil is defined by its center point p and a radius r.
The remaining 2n points of the stencil have the form

p± red (17)

for d = 1, ...,n where ed is the n-dimensional vector with 1 at the
d-th position and 0 otherwise, i.e.

e1 = (1,0,0, ...) , e2 = (0,1,0, ...) , (18)

The stencil thus forms a shape similar to a compass rose in two
dimensions which give the search algorithm its name.

The search progresses by evaluating the objective function for all
2n+1 point in the stencil si. The point that yields the largest value
of the objective function becomes the new center point pi+1 ∈ si+1.
If pi+1 = pi, the radius halved to produce ri+1 = 0.5r, otherwise
ri+1 = r. The search continues until a convergence criterion is met.

Compass Search is known to converge to the optimal solution if
the following assumptions are met:

1) the set {x : f (x)≤ f (p0)} is bounded.
2) ∇ f is Lipschitz continuous for all x, that is,

|∇ f (x)−∇ f (y)| ≤ L |x− y| (19)

for some constant 0 < L < ∞.
A proof for convergence under these conditions is presented in [6,
chapter 12.5.3].

http://robotics.itee.uq.edu.au/~hannakur/papers/tapir.pdf
http://robotics.itee.uq.edu.au/~hannakur/papers/tapir.pdf

	INTRODUCTION
	RELATED WORK
	POMDP Background
	Related POMDP-based Planners

	OVERVIEW OF GPS-ABT
	Details of GPS-ABT
	Constructing T and Estimating the Value Function
	General Pattern Search

	CONVERGENCE TO OPTIMAL SOLUTION
	SIMULATION RESULTS
	Push Box
	Continuous Tag

	SUMMARY
	References
	Appendix
	Golden Section Search
	Compass Search

