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Abstract

We design a method called MyPHI that predicts personal health index (PHI),

a new evidence-based health indicator to explore the underlying patterns of

a large collection of geriatric medical examination (GME) records using data

mining techniques. We define PHI as a vector of scores, each reflecting the health

risk in a particular disease category. The PHI prediction is formulated as an

optimization problem that finds the optimal soft labels as health scores based

on medical records that are infrequent, incomplete, and sparse. Our method

is compared with classification models commonly used in medical applications.

The experimental evaluation has demonstrated the effectiveness of our method

based on a real-world GME data set collected from 102,258 participants.
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1. Introduction

Modern societies have experienced dramatic growth in elderly population

from the beginning of this century. This implies increasing healthcare needs

and government expenditure. For example, the U.S. government spent $414.3

billion in elderly health care in 2011, $100 billion higher than the inflation-5

adjusted expenses in 2001 [1]. Annual geriatric medical examination (GME) is

now an integral part of elderly healthcare for many developed countries. For

instance, Australia [2], United Kingdom [3], and Taiwan [43] have GME pro-

grams to periodically monitor health status of senior residents. However, it is

always a difficult task for healthcare professionals to provide an overall report10

on personal health after a comprehensive medical check-up is performed with

hundreds of parameters. Moreover, the richness of GME records, such as correla-

tions amongst test results, their longitudinal progression, and their relationships

to other participants that have similar patterns of health development, is often

left unexplored. In fact, such exploration is manually impossible, because the15

complexity of the combined effects grows exponentially with the growth of the

number of different test results, the available number of longitudinal records,

and the total number of participants.

We design a method called MyPHI that predicts personal health index (PHI),

a new health indicator to explore underlying patterns of a large collection of20

GME records using data mining techniques. We define PHI as a vector of scores,

each of which is a compliment probability defined based on the health-related

risks associated with a particular disease category. Since the highest health

risk is health-related death, we explore the health-related main Cause of Death

(COD) information linked to the GME participants. Based on this definition,25

the higher the scores, the healthier the person. It is our belief that medical

decision support systems are used to support clinical professionals rather than

to replace them. So the primary goal of the proposed MyPHI is to draw their

attentions to participants with high risks.

To the best of our knowledge, this work is the first of this kind in predicting30
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personal health scores by mining large medical examination data. PHI provides

an important benchmark for understanding health status of the elderly people.

Particularly, the following parties can be benefited by PHI:

• Governments: Public health policies are often made and revised based

on scientific evidence from statistical analysis and research outputs [5]. For35

example, community health index can help the understanding of regional

health status [6]. Public health authorities can use PHI to gauge their

decisions on population health policies by utilizing the aggregated PHI of

individuals. Particularly, the impact of a policy on regional health can

be tracked by studying the progression or fluctuations of PHIs in a given40

time period. In addition, the population health in different regions can be

compared and contrasted using the accumulated PHIs.

• Organizations such as hospitals, insurance companies, and nursing homes

can better understand health status of the elderly through PHI. A sys-

tematic review in 2012 [7] suggested that clinical decision support systems45

(CDSSs) generally improved healthcare process for preventive and other

types of services, although the strength of evidence is application depen-

dent. Examples of recently developed data mining-based CDSSs include,

but not limited to, coronary surgery management [8], drug prescription

[9], cancer survivability [10] and nosocomial infections [11] predictions,50

and clinical monitoring in Intensive Care Unit (ICU) [12].

At hospitals, our proposed PHI can assist physicians with additional infor-

mation on patient conditions based on machine-extracted patterns across

a range of disease specialities, which would not be otherwise obtainable

via manual processing. Insurance companies may use the predicted PHI to55

assess personal health risks for consolidating insurance plans. The value

of such predictions was seen in the 3-million prize for hospitalization pre-

diction offered by the Heritage Provider Network in 2012 [13]. With PHI,

nursing home carers can easily track elderly people’s health status, and

adjust custodial and medical care plans accordingly.60
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• Individuals can be benefited for having a peace of mind about their

health status. People take regular medical examinations mostly not for

discovering diseases but for obtaining a peace of mind regarding their

health status. As a general practice, participant will have to meet a general

practitioner (GP) after the examination for receiving and understanding65

the results [14], based on which the GP might suggest lifestyle change,

further screening, or appointment with specialists. Once PHI is adopted, it

can come with the report and provide additional information by revealing

the person’s health risks in various disease categories. It can be useful for

motivating a participant with low PHI to follow doctor suggestions. In70

addition, the yearly PHIs can be used to track personal health status.

Indices or scores calculated based on patient conditions are commonly used in

clinical practice, for example the severity of illness scoring systems for Intensive

Care Unit (ICU) [15] and survival prediction tools for palliative care [16]. These

tools often serve as a starting point for clinical diagnosis or prognosis [15, 17].75

However, existing studies are generally based on statistical analysis on a small

set of factors manually selected by medical experts, but in an era of information

explosion, it is no longer possible to process all the information available and

select factors manually.

In the last decade, increasing number of data mining applications has been80

developed to support healthcare decision making [18, 19]. Of one particular

focus in recent years is the clinical risk classification [20, 21, 22, 12, 23]. These

studies generally treat class labels with 100% certainty. However, label uncer-

tainty is commonly found in clinical judgments due to expert subjectivity and

inadequate information [24]. Often it is handled as noise, and the task is to85

detect and correct mislabeling [25, 26, 27]. However, in the case of multiple,

non-exclusive medical conditions [28], such as comorbidity, it makes more sense

to treat labels with degrees of certainty rather than forcing them to belong to

one “true” class.

Recently in the field of Computer Vision, Yi et al. introduced a soft-label90
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learning model for complex event detection on Web videos [29]. For a given

small number of target event instances, the model leverages related instances

whose “relativeness” is uncertain and to be learned. Inspired by this work, we

formulate the PHI prediction problem as a soft-label optimization problem. In

the process of soft-label learning, we distinguish three types instances, namely95

participants with a target COD label, participants with a non-target COD label,

and participants without a COD label. Traditionally in a binary prediction

problem on a target event, instances of the first type are regarded as positive

and those of the other types are treated as negative. However, in our case,

participant records with different COD labels might share similar traits due to100

comorbidity, so some non-target instances could be “related” to the target ones.

Our proposed method can capture the differences amongst these three types of

instances.

This article substantially improves our previous work presented in a confer-

ence [30]. Firstly, we extend the concept of PHI from a single overall health105

score based on all-cause mortality to a vector of scores, each reflecting per-

sonal health risk in a disease category. Secondly, rather than treating labels as

100% certain, as in our previous work, we take a soft-label learning approach

to handle label uncertainty. Experimentally we demonstrate the effectiveness

of MyPHI based on a large geriatric medical examination (GME) data set of110

262,424 records from 102,258 participants.

The rest of the paper is organized as follows. Section 2 describes our data

sets. Section 3 details our MyPHI method and highlights the optimization tech-

nique employed to construct the prediction model. In Section 4, we demonstrate

the effectiveness of our method through extensive experiments. The visualiza-115

tion of PHI is demonstrated in Section 5. In Section 6 we review the existing

health scoring systems and models that handle label uncertainty. Section 7

concludes our work and discusses the further research directions.
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Figure 1: An example of a person’s medical examination records over years. The vertical axis

indicates the test items of various categories. Cells in black mark the items with abnormal

results. The years without records, say 2007, 2008 and 2010, are the years that the person

did not take the examination.

2. Data collection

Two data sets used in this study are a geriatric medical examination data set120

and a cause of death data set, linked together via the common attribute Person

ID, revealing the associations between examination results and main causes of

death.

2.1. Geriatric medical examination (GME) data set

GME is a de-identified data set with all private information, such as name,125

contact detail, and birth date, removed. Our GME data set has 230 attributes,

containing 262,424 check-ups of 102,258 participants aged 65 or above, collected

in a period of six years (2005 - 2010). Each de-identified GME record is rep-

resented by a Person ID and the examination results from a wide range of lab

tests, physical examinations, the Brief Symptom Rating Scale (BSRS) mental130

health assessments, the Short Portable Mental Status Questionnaire (SPMSQ)

cognitive function assessments, (de-identified) demographics as well as personal

health-related habits, such as exercise, eating, drinking, and smoking habits.

Key attributes in the above-mentioned categories are listed in Table 1. An

example of a participant’s GME records in years is included in Fig. 1. The135

person took three non-consecutive years of GMEs within a six-year period and
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the abnormal results were marked black. Due to the voluntary nature of GME

programs, the average number of records per participant is 2.56.

Three types of information were recorded for laboratory test and some phys-

ical examination items, namely the numerical results, status and descriptions.140

Numerical results are the machine output values of the test samples. Status

shows if the values are normal based on the reference value range of the machine.

Description fields give further text explanation on the abnormal results. As the

ranges of reference values differ in different hospitals and such information is

not given, numerical results are not comparable either between participants or145

for the same participant, because she might choose different hospital in different

years. Therefore, only the status values are used in this study.

The data were collected in a standard annual medical examination program

for elderly people, run by the Taipei City Government. Participants voluntarily

took part in the program, and were encouraged to visit on a yearly basis. Data150

related to individual identification were removed before the data acquisition.

The acquisition and processing of the data were approved by the Institutional

Review Board (IRB) of the Taipei City Hospital.

2.2. Cause of death (COD) data set

The Cause of Death (COD) data set stores the cases that people who had155

been taking geriatric medical examinations (GME) for some years and then

passed away. These records are linked to the GME data set via the common

attribute Person ID. The COD data set records the main causes of death of all

Taipei citizens, encoded with the WHO International Classification of Diseases,

with 9th Revision (ICD-9) in years (2005 - 2008) and ICD-10 in years (2009 -160

2010), a standard medical ontology for disease classification. There are in total

522 ICD-9 codes and 925 ICD-10 codes used in the COD data set. Attributes

available from the linked information include a 3-4 digit ICD code for main

cause of death, and time of the death (month and year). For example, the

“malignant neoplasm of bronchus and lung” is encoded as 162 in ICD-9 and165

C349 in ICD-10. In addition, only health-related CODs are considered in this
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Table 1: Selected GME attributes by categories

Type Category Attribute (example)

Patient Profile
Demographics age, marital status, gender, education level,

residential suburb

Habits reasons-for-taking-medicine, smoking, drink-

ing, exercise, drink-milk, eat-vegetable, clean-

teeth

Lab Tests

Biochemical glu-ac, total cholesterol (tcho), thyroglobulin

(tg), got, gpt, albumin (alb), thyroid stimu-

lating hormone (tsh)

Blood red blood cell, white blood cell, plate, hema-

tocrit (hct), mean corpuscular volume (mcv),

mean corpuscular hemoglobin (mch), alpha-

fetoprotein (afp), hemoglobin (hb)

Urine outlook, ph, protein, sugar, blood, red blood

cell, white blood cell, pus cell, epithelium cell,

casts

Other fobt

Examinations
Physical weight, height, waist, systolic, diastolic, pulse

External neck, chest, heart, breast, abdomen, back, rec-

tum, limbs, prosta

Other X-ray, EKG, cervical smear, abdominal ultra-

sound

Mental Health BSRS 5 questions on nervousness, anger, depression,

comparison with others, and sleep

Cognitive Function SPMSQ 10 questions, e.g., current date, day of the

week, where the person is situated, home ad-

dress, age, year of birth, etc.

research. The number of participants in the GME data set with COD codes is

7,569, accounting for 7.4% of the participants.
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2.3. Data Characteristics

We have identified three characteristics from our GME data set, namely170

infrequency, incompleteness, and sparsity.

• Infrequency: As GME is offered on a yearly basis, the record sequences

are infrequent, compared with time-series medical data, such as ECG and

body movements collected from wearable sensor devices [12, 31]. Time-

series data from wearable devices are often collected in the frequency of175

Hertz, so the problem is often on how to extract more compact data rep-

resentation to save computational cost [32]. By contrast, the infrequency

of GME data gives us relatively short sequences.

• Incompleteness: Due to the voluntary nature of GME, a person may

only take a couple of GMEs in his lifetime. For example, as shown in180

Figure 1, the person took GME in three non-consecutive years. Therefore,

the record sequences are incomplete along the timeline.

• Sparsity: Clinical judgements are often based on abnormal findings such

as observed symptoms, signs, or lab test results. From the perspective

of abnormalities, GME records are sparse, because the majority of the185

results would be normal.

These three characteristics of GME data differentiate our work from two

strains of traditional classification problems. Our problem is different from

the traditional point-based classification, since a person may have more than

one records. However, our problem is also different from the traditional time-190

series classification problem, which is often on high frequency series (e.g., ECG)

[32, 31], due to the infrequency and incompleteness of our data.

3. The Methodology

The proposed MyPHI prediction method that computes Personal Health In-

dex (PHI) for elderly healthcare contains three key components, namely data195
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Figure 2: The process of Personal Health Index (PHI) prediction

pre-processing, feature extraction, and model learning with uncertainty, as shown

in Fig. 2. The inputs of the method are the geriatric medical examina-

tion (GME) records of a population linked to the main cause of death (COD)

database. The output is a vector of k predicted scores in the range of [0, 1]

interval, reflecting personal health risks in k disease categories. Note that the200

algorithm is designed for medical data sets that share the characteristics de-

scribed in Section 2.3. Although in the following discussions we will use the

GME data set as an example, the applicability of our proposed method is not

limited to the data set.

3.1. Data pre-processing205

Due to the noise observed in real-world medical data, the raw data need to

be pre-processed. Firstly, we conducted data cleaning to remove extra or unrec-

ognizable symbols, converted wide characteristics from Asian-based key-in sys-

tems into narrow characteristics, and corrected obvious misspellings. Secondly,

for the free text fields, we only consider the “reasons for taking medicine” and210

“body obstacle type” fields of less noise. These texts were first tokenized and

tokens with top frequency counts are extracted as additional binary features.

Finally, since GME records are essentially longitudinal, participants with only

one record were excluded. This leaves us a subset of 221,074 records from 60,881

participants.215
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In addition, we adopt an event-based view that treats an observed abnormal

result as an occurrence of an event, following the practice of evidence-based

medicine that only takes the observed symptoms and signs into consideration.

For binary variable, abnormality is encoded as 1, and 0 otherwise. Real values

are firstly discretized into bins. Ordinal and categorical variables are binarized220

into a vector of binary variables representing the unique values of the origi-

nal variables. A variable takes the value 1 if the original variable takes the

corresponding value; otherwise, it is 0.

After the pre-processing stage, participant longitudinal records can be rep-

resented as a sequence of time-stamped records, which can be formally defined225

as follows:

Definition 1 (Record sequence). A record sequence si of a person pi is an

ordered list of m records 〈ri1, ..., rij , ..., rim〉, where record rij is a tuple (tij , vij)

of a d dimensional binary vector vij of values observed at time tij , where tij

is the normalized time mapped onto an integer space such that tij ∈ N and230

tij < tij+1.

3.2. Feature extraction

One of the key challenges we face is how to represent a participant’s records.

To begin with, we take a feature-based approach [32] that converts sequences

into a point-based representation, i.e., by transforming a sequence into a vector235

of features. The decision is based on the following reasoning. A participant

can have multiple records as depicted in Fig. 1, so it is not naturally in a

form of feature vector. In addition, these records cannot be simply flatten into

a feature vector because record sequences of participants have varied lengths.

In fact, record sequences are time-wise incomplete, as the average number of240

records per participant is 2.56 (Section 2.3). These considerations have led us

to abandon the more intuitive sequence-based methods, so the problem becomes

how to design a transformation mechanism that has a greater ability to capture

different shapes of curves.
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Our previous study on representation extraction strategies [30] suggests that

time smoothing kernels that assign time weight to values at time t outperform

methods without considering the longitudinal progression. Based on the previ-

ous results, we design a chi-squared kernel in current work to model the changes

of importance over time. It is chosen over the commonly used Gaussian distri-

bution because it has a greater ability in capturing different shapes of curves.

The probability density function of the chi-squared distribution is defined as:

f(t, θ) =

 tθ/2−1e−t/2

2θ/2Γ(θ/2)
t ≥ 0

0 otherwise
(1)

where θ is the degrees of freedom and Γ(·) is the Gamma function.245

The chi-squared kernel is defined as a function of truncated chi-squared

distribution:

Kθ(t) =


f(t,θ)

Φ(T )−Φ(1) t ∈ [1, T ]

0 otherwise
(2)

where Φ(·) is the cumulative distribution function of f(·).

The record sequence si of a person pi is then transformed into a vector xi

using Eq.(2):

xi =

m∑
j=1

Kθ(T − tij + 1) · vij (3)

where the (T − tij + 1) term reverses the time ordering, resulting in giving

higher weights to latest records; vij is the jth record of si obtained at time tij .

Algorithm 1 shows the full procedure of feature extraction.

3.3. Model learning250

To build an effective PHI prediction model for the elderly, we train k models,

each for a target disease category. As discussed earlier in Section 1, there can

be a degree of uncertainty that a COD is assigned to a person. This uncertainty

can be observed in two types of instances, namely the target disease instances

(known as the positive examples), and the non-target disease instances (usually255

treated as the negative examples). Intuitively, different people can belong to a

target disease in different degrees. In addition, non-target cases and alive cases,
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Algorithm 1 Feature Extraction

Input: S: a list of record sequences, θ: a scale parameter for the temporal

weighting kernel, T : the time window of interest.

Output: X: extracted feature vector of S.

X := []

while i < size(S) do

((tij , vij))j∈1...m := S(i)

X(i) :=
∑m
j=1Kθ(T − tij + 1) · vij

end while

return X

though all considered negative examples in the traditional sense, are “negative”

in different ways: non-target cases may be closer to the target cases than to the

alive cases.260

3.3.1. Optimization problem

Due to the uncertainty of labels, we formulate the problem as an optimization

problem [29] that finds a soft label for every instance. More specifically, given

training instances X = {x1, ..., xn} converted from n record sequences using

Eq. (3), the soft label Yi of xi is 1 + Si for target instances, 1 − Si for non-265

target instances, and 0 for alive instances, where Si that expresses the degrees

of certainty is a variable to be learned. This design can be expressed by defining

Y = Y a +A� S, where A� S is the entrywise product of vectors A ∈ Rn and

S ∈ Rn, S ≥ 0. Y ai = 1 for the target and non-target instances and Y ai = 0

otherwise; Ai = 1 for the target instances, Ai = −1 for the non-target instances,270

and Ai = 0 otherwise.

So the optimization problem can be defined as a regularized least squared

minimization problem with additional constraints on Y and S:

min
P,S,Y

||XTP − Y ||2F + Ω(P )

s.t. Y = Y a +A� S, S ≥ 0
(4)
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where || · ||F denotes the Frobenius norm such that ||B||F = (
m∑
i=1

n∑
j=1

|bij |2)1/2

and Ω(·) is a regularization term on P to prevent over-fitting.

We further postulate that noises of the labels are mostly from the non-target

disease cases, as these cases could exhibit similar or completely different trait

to the target cases. So a weight vector W is introduced, which is learned only

using the target disease instances and alive instances. By applying trace norm

|| · ||∗ on E = [W,P ], P can be further constrained by W , as trace norm can

uncover the shared knowledge of W and P [33]. The optimization problem is

modified as:

min
W,P,S,Y

||X̃TW − Ỹ ||2F + ||XTP − Y ||2F

+α(||W ||2F + ||P ||2F ) + β||E||∗
s.t. Y = Y a +A� S, E = [W,P ], S ≥ 0

(5)

where X̃ is the input data for the target and alive cases only, and Ỹ is the

corresponding labels: Ỹi = 1 for the target cases and Ỹi = 0 for the alive cases.275

W and P are regularized using the Frobenius norm to prevent over-fitting, and

together (i.e., E) they are further regularized using the trace-norm. α and β

are the coefficients for the regularization terms.

3.3.2. Optimization Procedure

Now we describe the procedure of solving the optimization problem formu-

lated in Eq. (5). Let D = 1
2 (EET)−

1
2 . Eq. (5) can be converted to:

min
W,P,S,Y

||X̃TW − Ỹ ||2F + ||XTP − Y ||2F

+α(||W ||2F + ||P ||2F ) + βTr(ETDE)

s.t. Y = Y a +A� S, E = [W,P ], S ≥ 0

(6)

Eq. (6) can be solved through iteratively updating P , W , and S until

convergence, by setting their partial derivatives to zero one at a time and solving

it accordingly. The convergence is proved in [29]. By setting the derivative of

Eq. (6) w.r.t. P to 0, we have:

P = (XXT + αI + βD)−1XY (7)
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Again, by fixing P and setting the derivative of Eq. (6) w.r.t. W to 0, we get:

W = (X̃X̃T + αI + βD)−1X̃Ỹ (8)

Optimizing S is to solve the following problem:

min
S≥0
||XTP − (Y a +A� S)||2F (9)

Let M = XTP − Y a. The problem becomes:

min
S≥0
||M −A� S)||2F (10)

Finally, the optimal solution to Eq. (10) is obtained by:

Sij = max(Mij/Aij , 0) (11)

As shown in Algorithm 2, the optimal solution to Eq. (6) is obtained by280

iteratively updating P , W , S with Eq. (8) - Eq. (10) until convergence.

Given an example xt, the predicted score for a target disease is PTxt. Let all

the k models (i.e., each is a P ) be stored in Λ ∈ Rd×k. The prediction function

f : Rd×1 → [−1, 1]k×1 can be defined as f(xt) = ΛTxt.

3.4. PHI calibration285

To convert the predicted scores output by Algorithm 2 into probabilities and

allow a person’s PHI to be comparable to that of others, we further employ a

step of PHI calibration. First, the scores are z-normalized within the model

outputs, namely zk = fk−µk
σk

, where fk is the kth score of the output vector, and

µk and σk are the mean and standard deviation of the kth model outputs.290

Since those with high risks are in the extreme end of the spectrum, we

employ a generalized extreme value distribution [34] G(t) = e−[1−t], which has

a steeper growth when t > 0. So the final PHI calibration function for the

kth model outputs is Gk(zk) = e−[1−zk]. Finally, the kth score of PHI is the

compliment probability, i.e., 1−Gk(zk).295
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Algorithm 2 Learning with Uncertain Labels

Input: X ∈ Rd×n: extracted d dimensional feature vectors of n participants,

X̃ ⊆ X: a subset of X of size m, containing only the target and alive cases,

Ỹ ∈ Rm×1: the corresponding labels of X̃, Y a ∈ Rn×1 and A ∈ Rn×1:

parameters for learning uncertain labels.

Output: Optimized W , P , S.

Set t = 0 and initialize W , P randomly;

repeat

Compute Dt as: Dt = 1
2 (EtE

T
t )−

1
2 ;

Update Pt according to Eq. (7);

Update Wt according to Eq. (8);

Compute Mt = XTPt − Y a;

Compute St by Stij = max(Mtij/Aij , 0) (Eq. (11));

t = t+ 1

until Convergence

4. Emperiments and Evaluation

Extensive experiments were conducted to evaluate MyPHI using a real-world

GME data set described in Section 2.

4.1. Disease category grouping

We selected top 10 disease categories that have the highest frequency counts300

in the GME data set based on the linked Cause of Death (COD) labels encoded

in ICD9 and ICD10, as shown in Table 2. The “Other” category is defined to

contain all the rest health-related ICD codes not in the top 10 disease categories.

4.2. Experiment setup

We compared MyPHI with two typical classification methods commonly used305

in medical applications as baselines, namely linear support vector machines

(LinSVM) and logistic regression (LR). We used LIBSVM [35] for the imple-

mentation of LinSVM and LIBLINEAR [36] for the implementation of LR. In
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Table 2: Numbers of positive cases in disease categories

Top k Disease Category Count

1 Lung 649

2 Heart 296

3 Cerebrovascular 153

4 Diabetes 112

5 Stomach 105

6 Colon 101

7 Liver 83

8 Pancreas 61

9 Septicaemia 60

10 Hypertension 42

11 Other 1,314

addition, we compared MyPHI with the class-weighted versions of the base-

line methods, denoted as LinSVM-W and LR-W respectively, where the class310

weights were set according to the ratio of positive and negative class. We trained

a model for each of the 11 disease categories, following the 35:35:30 stratified

train/validate/test split ratio in all experiments. The negative (alive) cases were

sub-sampled according to the positive vs. negative ratios 1:1, 1:10 and 1:100.

For the “Other” disease category in the case of 1:100, since the portion of neg-315

ative size exceeds the total number of negative cases, we report only the results

of 10 disease categories. The parameters of all the algorithms were searched on

the grid of {10−4, 10−2, 1, 102, 104} using the validation set. The parameter θ

for chi squared kernel in feature extraction phase was experimentally set to 4.

4.3. Results320

4.3.1. Clean vs. noisy cases

The algorithms were firstly evaluated under the ideal situation, where there

are only positive instances (i.e., those whose main cause of death is the target

disease) and negative instances (i.e., those who are alive). We call this setting
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Table 3: The averaged AUC (%) of 11 disease categories of various positive vs. negative ratios.

The proposed MyPHI significantly outperforms all the other algorithms in most cases.

Clean Case Noisy Case

Ratio MyPHI LinSVM LinSVM-W LR LR-W MyPHI LinSVM LinSVM-W LR LR-W

1:1 83.48 82.11 82.11 82.79 82.79 74.07 71.23 71.23 70.47 70.47

1:10 85.65 77.99 85.66 78.72 85.19 85.14 75.03 81.56 75.65 80.32

1:100 89.95 68.57 85.91 70.42 85.99 89.37 69.1 83.83 70.45 84.04

the clean case, as there is no non-target instances to confuse the learning al-325

gorithms. The results are listed on the left of Table 3 using the Area Under

the receiver operating characteristic Curve (AUC) measure under various posi-

tive vs. negative ratios settings. It is clear that MyPHI outperforms all other

methods in most cases, and is comparable with LinSVM-W under 1:10 ratio.

In addition, it can be observed that baseline methods without considering class330

weighting perform poorly at ratio 1:100. On the other hand, the class-weighted

versions of baselines (i.e., LinSVM-W and LR-W) can better handle class im-

balance, though not as good as MyPHI. In fact, MyPHI achieves its highest

performance at 89.95% averaged AUC under 1:100 ratio.

On the right of Table 3, we compare the algorithms in a noisy case, where335

the non-target instances are introduced by sampling the same amount as the

target instances. It can be seen that the performance is greatly compromised

in the case of 1:1 ratio for all algorithms. This shows that non-target cases

do confuse algorithms given limited learning instances. However, when the

portion of negative instances increases, the performance bounds back. This340

may explain how larger training instances can help mitigate noise. In addition,

the gap between MyPHI and other methods is enlarged in the noisy case. In

fact, the performance of LinSVM-W and LR-W drops significantly in the noisy

case. These results demonstrate the robustness of our method.

4.3.2. Individual disease categories345

We further compared the results at the level of individual disease category.

Fig. 3 shows the performance of the clean case in the upper graph and noisy case

in the lower graph. It can be seen that although performance varies according
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Figure 3: The AUC for individual disease categories under the 1:100 positive vs. negative

ratio: the upper graph shows the performance in the clean case, where no instances of non-

target disease categories are present; the lower graph displays the performance in the noisy

case, where instances of non-target disease categories are introduced.

to the categories, MyPHI generally outperforms the other methods. One ex-

ception is Hypertension in the clean case; however, our method performs better350

in the noisy case. Another exception is Diabetes in the noisy case. For Heart,

Cerebrovascular, Stomach, Colon, Liver, and Hypertension disease categories,

MyPHI shows significantly better results than the other methods.

We looked into the Receiver Operating Characteristic (ROC) curves of the

results in individual disease categories. Fig. 4 compares the performance of355

MyPHI, LinSVM-W and LR-W in the noisy case under 1:100 positive vs. neg-

ative ratio. The disease categories are ordered as before according to their sizes

and the results for top 10 categories are displayed. MyPHI clearly dominates

LinSVM-W and LR-W on the ROC graphs in the cases of Heart, Cerebrovas-

cular, Stomach, Colon, Liver, and Septicaemia categories, while MyPHI is com-360
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Figure 4: The ROC of top 10 disease categories under 1:100 positive vs. negative ratio and

noisy settings.

parable to the two for Lung, Diabetes, and Pancreas categories.

4.3.3. Effects of trace norm

We also investigated the effects of introducing the trace norm constraint on

W and P (Eq. 5), where target and alive cases are used to regulate the less
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Figure 5: Comparing the effects of applying the trace norm in averaged AUC: “with W”

denotes Eq. 5 where W is introduced and trace norm applied, while “w/o W” refers to Eq. 4

without the effect of trace norm.

certain labels from the non-target cases. As shown in Fig. 5, introducing W365

and trace norm improves the algorithm’s performance. The effects are more

significant in the cases of positive vs. negative ratio 1:1 and 1:100.

4.3.4. Effects of record sequence length

Studies have shown that increasing the completeness of data can lead to

better prediction performance [37]. As discussed earlier in Section 2.1 that the370

averaged record sequence length, i.e., number of records per person, for our

data set is 2.56, we further conducted experiments to investigate the effects of

record sequence length on the performance. Fig. 6 shows the averaged AUC

under 1:100 ratio with the 95% confidence limits as the error bars. The Standard

Error of the Mean (SEM) is used to calculate the standard error, i.e., STD/
√

nl,375

where STD is the standard deviation and nl is the number of cases with record

sequence length l. The upper and lower confidence limits can be calculated as

x̄± 1.96× SEM, where x̄ is the mean AUC.

Fig. 6 shows that predictions with 5 records have the highest averaged AUC,

followed by those with 3 and 4 records. Predictions with 2 records have the380
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Figure 6: Comparing the effects of the number of records per person on the performance in

averaged AUC. The error bar is calculated by Standard Error of the Mean (SEM).

lowest averaged AUC score of 84.53%, while the averaged AUC for predictions

with 6 records has a larger SEM.

4.4. Discussions

Label uncertainty is often observed in real-world medical data. Our extensive

experiments on a large GME data set with 262,424 check-ups of 102,258 partici-385

pants have shown the robustness of our model under label uncertainty and class

imbalance. Specifically, MyPHI achieves its best performance at above 89%

averaged AUC under 1:100 ratio, about 5% higher than LinSVM-W and LR-W

(Table 3), two de facto standard classifiers. The best AUC for a single disease

category is achieved in the prediction under the Lung-related disease category390

at 96.95% AUC (Fig. 3). The ROC curves (Fig. 4) further confirm the above

analysis at a fine-grand level. These results suggest that the proposed soft-label

learning model is able to better handle label-uncertain data commonly found in

medical applications. The parameter S for soft-labeling allows the algorithm to

learn the degree of certainty for every data instance based on the data structure.395

In addition, our experiments show that introducing the terms for W and

applying the trace norm on E = [W,P ] help regularize P , with which the per-

formance is improved (Fig. 5). This suggests that in dealing with uncertainty,
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expert knowledge on what kind of labels may be more certain than others is

important for designing an effective model.400

Finally, we compared the effects of the lengths (2 to 6) of the record sequences

on the performance in Fig. 6. Predictions based on 5-record sequences have the

best performance, while those with 2 records have the lowest. The corresponding

confidence limits based on the computed mean and standard error can be taken

into account along with the predicted PHI given the record sequence length.405

Note that the current model is built based on the GME data set, so it is

limited to the associated population, namely the elderly residents of Taipei City.

However, the proposed methodology is not limited to the current data set, but

can be applied to other medical data sets with similar characteristics as stated in

Section 2.3. We are also aware of the possible misinterpretation of the predicted410

results by non-professionals, which could happen to any screening results [38].

So the understanding and interpretation of the predicted PHI scores need to be

assisted by a general practitioner.

5. PHI visualization

We provide a visualization interface that allows health state analysis at the415

personal level, as well as the population level.

5.1. Personal health analysis

Health analysis at a personal level provides insights into individual’s health

conditions [39, 40] and lays the foundation of effective health monitoring [31, 12].

With MyPHI, a person’s PHI scores in disease categories can be computed, and420

the results can be displayed as a fingerprint chart on the left of Fig. 7, where

an annulus represents the PHI scores of a year and a colored cell reflects the

degree of severity for a disease category in that year. The white annuluses

denote the years with no examinations taken. Yearly PHI scores of a particular

disease category can be compared in the top-right chart for trend analysis.425

This visualization of PHI can make it easier for clinical professionals to grasp a

person’s health status.
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Figure 7: A dashboard of personal health analysis. The fingerprint on the left gives the break-

down PHI scores in disease categories, where an annulus of the concentric circle represents

the PHI scores of a year and a sector in an annulus denotes the score of a particular disease

category of that year. Color indicates severity and the white annuluses denote no attendance.

In addition, yearly PHI scores of a disease category are summarized in the bar chart on the

right.

5.2. Population health analysis

Health analysis at a population level can reveal regional health conditions

and assist local government’s fine-tune health policy making [41, 42, 43, 44, 45].430

Fig. 8 shows a dashboard of regional health based on the averaged PHI scores

of a disease category for the 12 districts of Taipei City, indexed by their zip

codes. The colors on the district map reflect the degree of regional health using

a color spectrum from red to green denoting PHI in the [0.5,1.0] range. Note

that since the current model is trained based on the senior population of Taipei435

City, the use of the computed PHIs should be limited to this context.

6. Related work

6.1. Existing health scoring systems

Health indices provide numerical expressions of health status [46]. Many

scoring systems were introduced to assist clinical decision-making, for exam-440

ple, the APACHE, SAPS, and MPM for Intensive Care Unit patients [15] and

24



Figure 8: A dashboard of Taipei City’s regional health based on the averaged PHI scores of

a disease category for the 12 districts indexed by their zip codes. The colors on the district

map reflect the degree of healthness based on the PHI scores.

the survival prediction tools for palliative care [16]. A systematic review con-

ducted in 2012 [7] showed that clinical decision support systems (CDSSs) im-

proved healthcare process for preventive and other types of services. Generally,

these methods are defined based on factors selected with expert knowledge and445

validated via population-based studies [47]. However, as discussed earlier, it

becomes problematic when the dimensionality increases and the longitudinal

aspect is involved. Yi et al. [48] developed a bio-mark based system to grade

personal health status. Again the model relies on the experts to define factors

and the associated weights. Recently, Rothman et al. filed a patent for a mon-450

itoring system that computes patient health scores based on Electronic Health

Records (EHRs) [17]; however, the underlying scoring mechanism is unknown.

In our early study [30], we introduced a classification-based framework that

predicts Personal Health Index (PHI) as an overall health score to provide feed-

back to individuals based on the evaluation of risks revealed in their medical455

examination records. A binary Support Vector Machine classification model

was built based on the same GME data set as described here in Section 2. How-

ever, the linked cause of death (COD) information was used as binary labels,
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positive for the deceased cases and negative for the alive cases. The output is a

predicted overall health score computed as the complement probability that a460

person belongs to the high risk class. However, the label uncertainty issue was

not present in this binary classification problem setting, because live/dead are

generally regarded as labels with high certainty [28].

6.2. Learning with label uncertainty

Label uncertainty is often treated as label noise in the literature [49]. In465

the medical domain, key sources of label noise are expert subjectivity and in-

adequate information in clinical judgments such as diagnosis [24]. Such noise is

regarded as mislabeling to be detected and corrected [25, 26, 27]. For example,

Garca-Zattera et al. employed binary Markov models to estimate misclassi-

fication parameters for dental research [27]. Rantalainen et al. introduced a470

Bayesian approach to detect control subjects who might be actually the undi-

agnosed cases in a case-control study [26]. The underlying assumption of these

approaches is that ground-truth labels exist and are certain, so the task is to

detect and correct mislabeling caused by human inadequacy.

However, uncertainty may come from multiple, non-exclusive medical condi-475

tions [28]. For example, health-related death can be caused by the complications

of several co-existing diseases, and the identified main cause of death (COD)

may only explain the death to a certain degree. In such cases, rather than iden-

tifying “mislabeled” cases, it makes more sense to allow labels to have degrees

of certainty.480

This problem can be resolved by adopting the soft-label learning approach

introduced by Yi et al. in the field of Computer Vision for complex event detec-

tion [29] on Web videos. In the context of event detection on videos, there are

often only a few positive instances available for training. On the other hand,

there are related instances whose “relativeness” to the target event are uncer-485

tain. They formulated the learning problem as a soft-label optimization problem

and demonstrated that exploiting related examples improved performance.
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7. Conclusion

Computing comprehensive health scores for citizens was not considered prac-

tical before the big data era. Because of the availability of a large volume of490

data collected from multiple sources with all kinds of methods over years, ef-

fectively evaluating health status of a person from-cradle-to-grave is becoming

possible. One of such data sources is from the annual geriatric medical exam-

ination (GME) which is now an integral part of elderly healthcare for many

developed countries. Predicting personal health status based on medical exam-495

inations reveals a promising and important trend in healthcare research.

In this article we described MyPHI, a data mining-based method that pre-

dicts Personal Health Index (PHI) based on GME records. The extensive experi-

ments on a real-world GME data set of 262,424 records from 102,258 participants

demonstrated that our model outperformed the commonly-used classifiers, such500

as linear SVM, logistic regression and their class-weighted versions. In particu-

lar, MyPHI is shown to be robust under label uncertainty and class imbalance,

and achieved 89.95% averaged AUC (Area Under the receiver operating char-

acteristic Curve) under a ratio of 1:100 positive vs. negative.

Overall, we believe we have provided a new direction of quantifying personal505

health through data mining techniques. We foresee three aspects to improve

the PHI prediction in future.

• Data semantics. Text fields in GME records, such as doctor suggestions

and result descriptions, may contain useful information that can be further

incorporated into the evaluation to improve the effectiveness.510

• Data expansion. Other information sources, such as online medical in-

formation, bio-marks collected from mobile sensor devices (e.g., accelerom-

eter and gyroscope on a smart phone recording the daily activities of a

person), and in-hospital data, can be linked to obtain more comprehensive

results.515

• Dynamic system. In current work, PHI is computed based on the
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archived GME database, which can be extended to an online dynamical

version.
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