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Abstract Uncertainty in motion planning is often caused by three main sources: mo-
tion error, sensing error, and imperfect environment map. Despite the significant ef-
fect of all three sources of uncertainty to motion planning problems, most planners
take into account only one or at most two of them. We propose a new motion planner,
called Guided Cluster Sampling (GCS), that takes into account all three sources of
uncertainty for robots with active sensing capabilities. GCS uses the Partially Observ-
able Markov Decision Process (POMDP) framework and the point-based POMDP
approach. Although point-based POMDPs have shown impressive progress over the
past few years, it performs poorly when the environment map is imperfect. This poor
performance is due to the extremely high dimensional state space, which translates
to the extremely large belief space B. We alleviate this problem by constructing a
more suitable sampling distribution based on the observations that when the robot
has active sensing capability, B can be partitioned into a collection of much smaller
sub-spaces, and an optimal policy can often be generated by sufficient sampling of a
small subset of the collection. Utilizing these observations, GCS samples B in two-
stages, a subspace is sampled from the collection and then a belief is sampled from
the subspace. It uses information from the set of sampled sub-spaces and sampled
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beliefs to guide subsequent sampling. Simulation results on marine robotics scenar-
ios suggest that GCS can generate reasonable policies for motion planning problems
with uncertain motion, sensing, and environment map, that are unsolvable by the best
point-based POMDPs today. Furthermore, GCS handles POMDPs with continuous
state, action, and observation spaces. We show that for a class of POMDPs that often
occur in robot motion planning, given enough time, GCS converges to the optimal
policy. To the best of our knowledge, this is the first convergence result for point-
based POMDPs with continuous action space.

1 Introduction

Uncertainty in robot motion planning are often caused by three main sources: motion
error, sensing error, and imperfect environment map. These errors are no longer neg-
ligible when robots leave the highly structured environment, such as factory plants,
to operate in our homes, offices, and outdoor environment. Robot motion and sen-
sors are subject to various noise. Although nowadays system noise is often small
and negligible, outside disturbances are beyond our control and often cause substan-
tial noise. For instance, water currents highly accentuates motion errors of marine
robots, snapping shrimps dominates noise in sonar measurement, etc. Furthermore,
imperfect environment map is unavoidable as maps of our living spaces are acquired
through sensors subject to various substantial noise. Although all three sources of
uncertainty significantly affects motion planning problems, most planners take into
account only one [5,8,16] or at most two sources of uncertainty [4,22]. This paper
presents a new motion planner that takes into account all three sources of uncertainty
for a robot with active sensing capability.

Our new planner uses the Partially Observable Markov Decision Process (POMDP)
framework. POMDP is a mathematically principled and general framework for plan-
ning under uncertainty. Due to uncertainty, a POMDP agent never knows its exact
state and hence can not decide the best action to perform based on a single state.
Therefore, a POMDP agent decides its action based on a set of states that are consis-
tent with the available information. It represents a set of possible states as a distribu-
tion over the state space, called a belief. A POMDP agent plans in the belief space B,
which is the set of all possible beliefs.

Although solving a POMDP is computationally intractable in the worst case [17],
recent development of point-based POMDPs [15,19,23] have drastically increased
the speed of POMDP planning. Key to point-based POMDPs is to sample a set of rep-
resentative beliefs from B and plan with respect to the set of sampled beliefs, instead
of the entire B. By doing so, point-based POMDPs can generate a good approxima-
tion to the optimal solution for motion planning problems with moderate difficulty,
within a few minutes [10,14,15,23].

However, even the best point-based POMDPs perform poorly in motion planning
with imperfect environment map, due to these three major challenges. First is the
curse of dimensionality. When both the environment map and robot configuration
are not perfectly known, we need to define the state space S as a joint product be-
tween the configuration space and the space of possible environment maps. Setting
the environment map as part of the state variables causes the dimension dim(S) of
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S to be extremely high. Consider a simplistic problem of a 2-DOFs robot operating
in an environment containing two triangular obstacles where the positions of the ver-
tices are not known perfectly. Dim(S) is already 14 ! And 12 of them are contributed
by the space of possible environment maps. This dimensionality issue is aggravated
in POMDPs, as they plan in the belief space B whose size is doubly exponential in
dim(S). It is true that point-based POMDP plans with respect to a sampled repre-
sentation of B. But, the sampled representation must be representative enough before
a good approximation to the optimal policy can be generated. And in general, the
larger B is, the more difficult it is to find the set of representative beliefs. As a result,
even the best point-based POMDPs today [15,23] perform poorly on problems with
uncertain environment map.

Second is the long planning horizon typical of motion planning problems. In a
motion planning task, a robot often needs to take many actions to reach the goal,
resulting in a long planning horizon. The complexity of planning often grows expo-
nentially with the horizon.

Third is continuous control space. Most motion planning problems have continu-
ous action space, but most POMDP planners assume discrete action space. Although
we can discretize the continuous control space by sampling, no convergence results
is known, because a POMDP planner computes a max over the control space. While
sampling has been shown to approximate the average operator well, almost no result
is known on how well sampling approximates the max operator.

To alleviate the above three challenges for a robot that localizes itself through
active sensing, we propose a new point-based POMDP planner, called Guided Cluster
Sampling (GCS).

To alleviate the dimensionality issues, GCS constructs a more suitable sampling
distribution based on two observations. First, the optimal policy often consists of a
small number of sensing actions. Second, only after a sensing action is performed,
that the robot’s understanding about its environment changes. Suppose R∗(b0) is the
set of beliefs that are reachable under an optimal policy from a given initial belief b0.
The above observations mean that if we partition B into a collection of sub-spaces,
where each sub-space corresponds to the set of all beliefs with the same marginal dis-
tribution of environment maps, then R∗(b0) lies in a small subset of the collections.
Since we can generate a good approximation to the optimal policy from sufficient
samples of R∗(b0) [12], the above observations imply that although B is huge, a
representative set of B is likely to be small and lie in a small set of much smaller
subspaces of B.

Utilizing the above observations, GCS partitions B into subspaces based on the
marginal distributions of environment map, and samples B by sampling a sub-space
from the partition, and then sampling a belief from the sampled sub-space. Of course
ideally, we would like to sample only from R∗(b0). But since R∗(b0) is not known
a priori, we use heuristics based on information from the sampled sub-spaces and
sampled beliefs to guide subsequent sampling.

To alleviate the long planning horizon issue, GCS adopts the strategy in [14]. It
reduces the effective planning horizon by using action sequences, instead of a single
primitive action, to guide sampling B.
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GCS handles continuous state, control, and observation spaces by using sampled
representations. We show that for a class of POMDPs that often occur in robot motion
planning, given enough time, GCS converges to the optimal policy. To the best of
our knowledge, this is the first convergence result for point-based POMDPs with
continuous control space.

2 Background and Related Work

2.1 Motion planning under uncertainty

In motion planning, uncertainty arises from three main sources, i.e., imperfect con-
trol, imperfect sensing, and imperfect information about the environment. However,
most motion planners take into account only one or two sources of uncertainty. For
instance, Stochastic Motion Roadmap [1] takes into account only control uncertainty.
The work in [5] takes into account only sensing uncertainty, while the work in [8,
16] take into account only imperfect information about the environment. LQG-MP [4]
and Belief Roadmap [22] take into account two sources of uncertainty, i.e., control
and sensing uncertainty, but restrict the uncertainty to be Gaussian. Our new planner
takes into account all three sources of uncertainty and allows any type of distribution
with bounded support for control, sensing, and environment map uncertainty.

A few work that take into account all three sources of uncertainty during plan-
ning [13,24] are designed specifically for exploration task. The work in [13] restricts
control, sensing, and map uncertainty to be Gaussian, while [24] finds an approxi-
mate solution using a greedy one-step lookahead method, which is often inadequate
for general motion planning problems as they often require long planning horizon.

Motion planning under uncertain control, sensing, and environment map is essen-
tially a POMDP problem, and general POMDP planners can conceptually be used.
However, despite the impressive progress of such planners [15,19,23], they face sig-
nificant difficulties when the environment map is uncertain. Recently, [7] alleviates
these difficulties by using online POMDP. However, this strategy does not perform
global planning in the belief space. As a result, it may not converge to the optimal
policy. Our planner performs global planning in the belief space by utilizing domain
specific properties.

2.2 POMDP Background

Formally, a POMDP is specified as a tuple 〈S,A,O,T,Z,R,γ〉, where S is the set of
states, A is the set of actions, and O is the set of observations. In each time step, the
agent lies in a state s∈ S, takes an action a∈A, and moves from a start state s to an end
state s′. Due to the uncertainty in action, the end state s′ is modeled as a conditional
probability density function T (s,a,s′) = f (s′|s,a). The agent may then receive an
observation. Due to the uncertainty in observation, the observation result o ∈ O is
again modeled as a conditional probability density function Z(s′,a,o) = f (o|s′,a).
In each step, the agent receives a reward R(s,a), if it takes action a in state s. The
agent’s goal is to maximize its expected total reward by choosing a suitable sequence
of actions. When the sequence of actions has infinite length, we specify a discount
factor γ ∈ (0,1) so that the total reward is finite and the problem is well defined.
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A POMDP planner computes an optimal policy that maximizes the agent’s ex-
pected total reward. A POMDP policy π : B→ A is a mapping from B to A, which
prescribes an action a, given the agent’s belief b. A policy π induces a value function
Vπ(b). The value function Vπ(b)=E [∑∞

t=0 γ tR(st ,at)|b,π] specifies the expected total
reward of executing policy π . A policy can be represented by various representations,
e.g., policy graph [2], α-function [21], and pairs of a belief and an action [25]. GCS
can use any policy representation for continuous S and O.

To execute a policy π , an agent executes action selection and belief update repeat-
edly. For example, if the agent’s current belief is b, it selects the action referred to by
a = π(b). After the agent performs action a and receives an observation o according
to the observation function Z, it updates b to a new belief b′ given by

b′(s′) = τ(b,a,o) = ηZ(s′,a,o)
∫

s∈S
T (s,a,s′)b(s)ds (1)

where η is a normalization constant.

2.3 Point-based POMDP

Point-based POMDPs trade optimality with approximate optimality in exchange for
speed. It reduces the complexity of planning in B by representing B as a set of sampled
beliefs and planning with respect to this set only. To generate a policy, most point-
based POMDPs use value iteration, utilizing the fact that the optimal value function
satisfies Bellman equation. They start from an initial policy, represented as a value
function V . And iteratively perform Bellman backup on V at the sampled beliefs,
until the iteration converges. Over the past few years, impressive progress have been
gained by improving the strategy for sampling B [15,19,23].

Despite the impressive progress, even the best POMDP planners face significant
difficulties in solving motion planning under uncertain environment map. GCS alle-
viates these difficulties by constructing a more suitable sampling strategy based on
domain specific properties.

Furthermore, most point-based POMDPs are designed for discrete state, action,
and observation spaces. Although a few [9,21] handle continuous state, action, and
observation spaces, they do not guarantee convergence to the optimal policy when
the action space is continuous. We guarantee convergence to the optimal policy for a
class of POMDP problems with continuous state, action, and observation spaces, that
often occur in robot motion planning.

3 Problem formulation

3.1 POMDP formulation

Let’s first consider a robot operating in a 2D environment populated by polyg-
onal obstacles. GCS can be extended directly to 3D environment, but for simplicity
we only discuss 2D environment. We know the exact number of polygons, the ex-
act number of vertices in each polygon, and the exact connectivity between the ver-
tices in each polygon. However, we do not know the exact position of the vertices.
We represent this uncertainty as probability distributions with bounded support (e.g.,
Figure 1).
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We represent each possible environment map as a feature map, where each feature
corresponds to an obstacle’s vertex or a goal feature. A goal feature is a mark in the
environment, indicating the robot’s goal position. Suppose the features are numbered
sequentially from 1 to n and suppose Ei is the set of all possible positions of feature-i.
Then, the domain of each Ei is a bounded subset of R2 and the set E of all possible
environment maps is defined as E1× ·· ·×En. To cope with uncertainty in both the
environment map and the robot’s configuration, the POMDP state space S is defined
as the joint product between the robot’s configuration space Q and E, i.e., S=Q×E =
Q×E1×·· ·×En.

To model active sensing mechanism, the

Fig. 1 The robot is a pentagon. The two blue
pentagons represent the possible initial config-
urations of the robot. The grey polygons are
obstacles. The position of each vertex is not
perfectly known, and maybe anywhere within
the rectangular region.

action space A consists of two subsets, i.e.,
control set U and {sensing}. A control ac-
tion u ∈ U moves the robot with some er-
ror. These errors are represented in the tran-
sition function as a probability distribution
with bounded support. When a control ac-
tion is performed, no observation is perceived.
When a sensing action is performed, the robot
does not move but perceives observations about
the features positions, according to the ob-
servation function.

The observation space O is the set of all
possible perceived positions of the features, i.e., O = ∏

n
i=1 Oi, where Oi is the set

of all possible perceived positions of feature-i and n is the number of features in
the environment map. We set Oi = na whenever the robot does not see feature-i. A
perceived position of the features is the result of processing raw sensor data, which
includes handling the data association problem. Any data association method can be
used, including multiple hypothesis methods which generate multi-modal distribution
for perceived features positions. Data association is a large domain in itself and is
outside the scope of this paper. The perceived positions are defined with respect to
the robot’s local coordinate system. Notice that our observation space is exponential
in the dimension of E. This large observation space significantly contributes to the
difficulty of solving the POMDP problem, as we will discuss in Section 4.

The observation function Z is a conditional distribution function with bounded
support. It represents two types of uncertainties. First is visibility uncertainty, which
indicates the probability that the robot sees a feature that lies in its visibility region. It
is represented as a discrete conditional distribution Zvis, defined as Zvis(〈q,ei〉,sensing,see(oi))=
P(see(oi) | ei ∈Vis(q)), where see(oi) = 1 if the robot perceives feature-i and 0 oth-
erwise, and Vis(q) is the visibility region of the robot at configuration q ∈ Q. The
second type of uncertainty is measurement uncertainty, that models the perceived
position of the features given a state. It is represented as a continuous conditional
density function Zmeasure. The observation function Z is then defined as
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Z(s,sensing,o) = Z(〈q,e〉,sensing,(o1, . . . ,on))

=
n

∏
i=1

Zmeasure(feature-i is seen at oi | 〈q,ei〉,see(oi))×

Zvis(〈q,ei〉,sensing,see(oi)) (2)

where n is the number of features. When feature-i is not seen, oi = na. Various sen-
sors constraints, such as the range and bearing limit, can be modelled easily in Z.
And once Z models these constraints, GCS automatically takes them into account
during planning. Now, since observations are defined with respect to the robot’s local
coordinate system, the function Z depends only on the relative configuration of the
environment with respect to the robot. This relative dependency is used by GCS to
construct a more effective sampling distribution (see Section 5.1).

We design the reward function R as an objective function for reaching a goal
region with minimum cost. The goal region is the set of points within a small pre-
specified distance from a goal feature. The cost is the sum of moving/sensing cost
and collision cost. For any state s ∈ S and any action a ∈ A, we define the reward
function as R(s,a) = Rgoal(s) + Raction(s,a) + Rcollision(s,a), where Rgoal(s) is the
reward for reaching a goal region, Raction(s,a) is the cost of performing a from s,
and Rcollision(s,a) is the expected collision cost of moving according to a from s.
Notice that R depends only on the action performed and the relative position between
the environment features and the robot. GCS uses this property to generate a more
effective sampling guide (see Section 5.1).

3.2 Continuity properties

Unlike most work in POMDP planners, in this paper, S, U , and O are all continuous.
Continuous spaces are more natural for modeling robotics problems. To represent
these continuous spaces, GCS uses sampled representations. It represents beliefs us-
ing weighted particles. GCS can use any policy representations for POMDP with
continuous state space, e.g., point representation [25] and policy graph [2].

Now, we define the continuity properties of R, Z, and T with respect to S and A,
so that convergence to the optimal policy can be guaranteed even when A is approxi-
mated with its sampled representation. The approximation result is in Section 7. The
properties with respect to S are,

Definition 1 Suppose 〈S,A,O,T,Z,R,γ〉 is a POMDP with continuous S. Let DS be
a metric in S. The POMDP is LS-continuous with parameter (KRS,KZ), KRS,KZ ∈ R,
when:

1. The motion uncertainty is the same everywhere. For any displacement vector d on
S and any s,s′ ∈ S, T (s,a,s′) = T (s+d,a,s′+d).

2. The observation function Z is Lipschitz continuous in S. For any s,s′ ∈ S, any a,a′ ∈
A, and any o ∈ O, |Z(s,a,o)−Z(s′,a,o)| ≤ KZ ·DS(s,s′).

3. The reward R is Lipschitz continuous in S. For any s,s′ ∈ S and any a∈ A, |R(s,a)−
R(s′,a)| ≤ KRS ·DS(s,s′).
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Property-1 may seem odd as it means that the robot may go through an obstacle.
However, notice that in motion planning, the modeling of actual physical dynamics
during collision is essentially a way to generate motion strategy with low collision
cost. We can generate the same strategy without modelling the effect of collision in
T , by setting a high penalty for collision. This trick is similar to the use of potential
function in deterministic motion planning. Property-1 simplifies proving the conver-
gence result (Section 7), as transition from all states can be treated equally.
Property-2 means that the nearby states generates similar observations. This is a com-
mon assumption in robotics.
Property-3 means that the robot receives similar immediate reward when it performs
the same action from nearby states. Since Lipschitz condition is closed under sum-
mation, to satisfy this property, we only need to ensure that each component of R is
Lipschitz. This can be satisfied easily, for instance by setting Rgoal to be linearly in-
creasing as the robot becomes closer to the goal region, Raction for the same action to
be the same everywhere, and Rcollision to be linearly increasing as the robot becomes
closer to an obstacle. This reward function is similar to a potential function used in
motion planning [6].

Now, we define the continuity properties of R, Z, and T on A.

Definition 2 Suppose 〈S,A,O,T,Z,R,γ〉 is a POMDP where S is continuous. And
A can be partitioned into a finite collection P of disjoint continuous sets, where
two actions a,a′ ∈ A are in the same set P ∈P whenever Oa

⋂
Oa′ 6= /0, Oa is the

set of observations that can be perceived when a ∈ A is performed, i.e., Oa = {o ∈
O | ∃s ∈ S Z(s,a,o) > 0}. Suppose DS and DP are metrics on S and on set P ∈
P . Then, the POMDP is LA-continuous with action partition P and parameters
(KRA,h) when the three properties below hold. The parameter KRA ∈ R, while h is
an increasing function with h(0) = 0, that maps distance in A to distance in S. The
properties are:

1. For any P ∈P , any a,a′ ∈ P, and any s,s′ ∈ S, T (s,a,s′) = T (s,a′,s′+ f (a,a′)),
where f is a function that maps a pair of actions in A to a displacement vector in S,
such that DS(s,s+ f (a,a′))≤ h(DP(a,a′)).

2. The observation function is the same for any action in the same set of P . For any
o ∈ O, any s ∈ S, any P ∈P , and any a,a′ ∈ P, Z(s,a,o) = Z(s,a′,o).

3. The reward R is Lipschitz continuous on each set in P . For any s ∈ S, any P ∈P ,
and any a,a′ ∈ P, |R(s,a)−R(s,a′)| ≤ KRA ·DP(a,a′).

An example of P in our POMDP model is {U,{sensing}}. Property-1 means that
when nearby actions in the same element of P , are applied to the same state, the
resulting states would be close too. Property-2 means that within the same action
set P ∈P , the observation that can be perceived by the robot depends only on the
robot’s configuration and features’ positions. Property-3 is similar to property-3 of
Definition 1, but applied to A.

4 Overview of GCS

Key to point-based POMDPs is to sample a representative set of beliefs from the
belief space B and use it as an approximate representation of B. For computational
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efficiency, most recent point-based POMDPs sample from the set R(b0) of points
reachable from b0, instead of the entire B. The sampled beliefs are represented as
a belief tree T , where each node represents a sampled belief and the root is b0. To
sample a new belief, these planners sample a node b ∈ T , an action a ∈ A, and an
observation o ∈ O according to suitable probability distributions or heuristics. They
then compute b′ = τ(b,a,o) using (1) and inserts b′ into T as a child of b in T . If
a POMDP problem requires h action and observation steps as the effective planning
horizon, the size of the complete belief tree —the effective sampling domain— is
O(|A|h|O|h) where |A| and |O| are the size of the action and observation spaces. This
effective sampling domain is often much smaller than B, and hence significantly re-
duces the difficulty in sampling a representative set of beliefs. However in our case,
the size of the effective sampling domain is still huge, as |O| is exponential in the
number of environment features and h tends to be large.

Having a huge effective sampling domain may pose two difficulties in solving
the POMDP problem. One is in finding the set of representative beliefs. This is es-
pecially true when the set of representative beliefs is small. In this case, finding the
set of representative beliefs is similar to the narrow passage problem that has often
degraded the quality of sampling-based methods in deterministic path planning. How-
ever, once the set of representative beliefs is found, generating an optimal policy can
be done fast. Another difficulty is in generating the optimal policy. The huge effective
sampling domain can imply that the set of representative beliefs is large too. When
this happens, point-based methods would face difficulties in generating the (approxi-
mately) optimal policy even after the set of representative beliefs is sampled, as they
still need to perform backups —the most costly primitive operation in point-based
POMDPs— on a large number of points.

Active sensing problems often pose only the first difficulty, which means that
point-based method is still a viable option. Although the effective sampling domain
is huge, a set of representative beliefs, i.e., one that enables the generation of an
optimal policy, often lies in a much smaller subspace of B. The results in [12] shows
that an optimal policy can be generated by sufficient sampling from the set R∗(b0) of
beliefs that are reachable under an optimal policy from the initial belief b0. In active
sensing problems, R∗(b0) often lie in a much smaller subspace of B. Active sensing
is often applied to problems with high sensing cost, because if the sensing cost is
low, continuous sensing is acceptable and active sensing is not needed. Due to the
high sensing cost, the optimal policy of many active sensing problems contains only
a small number of sensing actions. Since a robot’s belief over its environment changes
only when a sensing action is performed, in-between two scanning actions, the robot’s
belief may change only to another belief that has the same marginal distribution of
the environment space E. Therefore, if we partition B into sub-spaces, where each
sub-space corresponds to the set of all beliefs b ∈ B that have the same marginal
distribution of E, then R∗(b0) for active sensing problems often lie in a small set of
these sub-spaces. More formally, if we define a partitioning C of B as,

Definition 3 The partition C of B is a collection {C(b1
E),C(b2

E),C(b3
E), . . .} of dis-

joint sub-spaces, where each C(bE) = {b ∈ B | ∫q∈Q b(〈q,e〉)dq = bE ,e ∈ E}.
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Then, R∗(b0) often lie in a small subset of C . Since dim(C(bE)) of any C(bE) ∈ C
is doubly exponential in dim(Q), instead of the much larger dim(S), R∗(b0) lies in
a much smaller subspace of B. Therefore, we can often find a representative set of
beliefs by sampling from a small subset of C .

Utilizing the above observations, GCS alleviates the difficulties due to the huge
B and huge effective sampling domain by sampling a small number of relevant sub-
spaces from C and then sampling beliefs only from the sampled subspaces. Of course
ideally, the sampled beliefs are all in R∗(b0). However, since R∗(b0) is not known
a priori, GCS samples B incrementally. It uses heuristics based on environment dis-
tributions in the sampled subspaces and the sampling history, to guide sampling sub-
sequent subspaces and to guide sampling representative beliefs in each subspace. To
further alleviate the planning complexity, GCS reduces the planning horizon by using
action sequences, instead of primitive actions, to guide sampling B.

Similar to most point-based POMDPs, GCS constructs a belief tree T , but ex-
pands it using the above idea. In T , sampling a small number of sub-spaces in C is
the same as limiting the number of sensing–observation branches to be small. For this
purpose, GCS reduces the number of expansion using a sensing action, and reduces
the number of observation branches after each sensing action. To reduce the num-
ber of expansion using a sensing action, GCS expands T using two types of action
sequences, i.e., action sequences with a single sensing action located at the end and
sequences with no sensing action. To reduce the number of observation branches af-
ter a sensing action, GCS samples observations that could be perceived by the robot
and results in beliefs that are significantly different than other beliefs in T . GCS uses
a more suitable metric (Section 5.3) to decide how different two beliefs are.

The overall algorithm on how GCS
b0

. . .

(a1, a2, . . . , al) (a′1, a
′
2, . . . , a

′
k)

. . .

o1 o2 o3

B

C(bE)

C(b′E)

Fig. 2 The belief tree T (left) and the belief space B
(right) it represents. Each node in T lies in an element
of C . Suppose b ∈ T lies in C(bE ) ∈ C . Each out-edge
of a node b corresponds to a path in C(bE ).

expands T is in Algorithm 1. Given a
node b ∈ T to expand, GCS finds a
subspace C(bE) ∈ C that contains b
(line 4). It uses the environment map
distribution bE as a guide to gener-
ate an action sequence (line 5) that
leads to the goal state with high prob-
ability and low collision cost, or to a
belief where useful sensing data can
be gained with high probability. The
node b is then expanded using the gen-
erated action sequence. To expand b∈

T using an action sequence (a1,a2, . . . ,al), GCS iteratively apply (1) to b. Specifi-
cally, τ(b,(a1,a2, . . . ,al),noObservation) (line 6) means that it computes a sequence
of beliefs (b1,b2, . . . ,bl), where b1 = τ(b,a1,noObservation) and bi = τ(bi−1,ai,noObservation)
for i ∈ [2, l], and returns the last belief bl . A new belief is inserted into T only when
the distance between the new belief and its nearest node in T is more than a given
threshold. The action edge that connects b with the newly inserted belief is then anno-
tated with the action sequence. Figure 2 shows an illustration of T . Line 7–16 presents
the difference of expanding b using an action sequence that contains a sensing action
at the end and a sequence that contains no sensing action.
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Algorithm 1 Guided Cluster Sampling (N)
1: Initialize T by setting b0 as the root.
2: for i = 1 to N do
3: b = Sample a node from T inversely proportional to the number of times b has been sampled.
4: 〈0,bE 〉 = Transform(b).
5: (a1,a2, . . . ,al) = GenerateAnActSeq(bE , V(b), M).
6: Let bl−1 = τ(b1,(a1, . . . ,al−1),noObservation).
7: if al is a sensing action then
8: Let O′ ⊂ O be the set of sampled observations.
9: for each o ∈ O′ do

10: bl = τ(bl−1,sensing,o).
11: if minb′∈T DB(bl ,b′)> ε then
12: Insert bl into T as a child of b.
13: else
14: Let bl = τ(bl−1,al ,noObservation)
15: if minb′∈T DB(bl ,b′)> ε then
16: Insert bl into T as a child of b.
17: for all b′ = children of b do
18: BACKUP(b′).

5 Guided Cluster Sampling (GCS)

5.1 Finding a subspace in C that contains b

To find a subspace in C that contains b, GCS first transforms the environment map
to the robot’s local coordinate system (line-4 of Algorithm 1). More precisely, let
g : S→ S be a many to one function where g(s) = g(〈q,e〉) = 〈0,Φ(e)〉, 0 is the origin
of the robot’s coordinate system, and Φ(e) is a function that transforms the position of
each environment feature to the robot’s local coordinate system. The transformation
for beliefs is then defined as follows. Suppose b′ = Trans f orm(b), then

b′(s′) =
∫

s∈S
b(s) · I(s,s′)ds where I(s,s′) =

{
1 if g(s) = s′.
0 otherwise. (3)

The transformed belief b′ has probability one that the robot’s configuration is at 0.
This transformation transforms the robot’s uncertainty to the environment map’s un-
certainty, such that the marginal distribution bE of E in b′ incorporates the uncertainty
in both the robot’s configuration and the environment map. As a result, the sampling
guide constructed using information from C(bE)∈C becomes more effective. Details
on the sampling guide is in Section 5.2.

Now, the question is would Trans f orm change the computed optimal policy. The
answer is no, more precisely,

Theorem 1 A POMDP 〈S,A,O,T,Z,R,γ〉 that is LS-continuous, where R and Z de-
pend only on the relative configuration of the robot with respect to the environment,
V ∗(b) =V ∗(Trans f orm(b)) for any belief b ∈ B. 1

This theorem means that both the belief and its transformation converge to the same
optimal value, and therefore can be used interchangeably in computing the optimal
solution.

1The proofs of all theorems are in Appendix.
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5.2 Generating action sequences

Suppose C(bE)∈C is the sub-space of B that contains the node b∈ T to be expanded.
And suppose QbE is the robot’s configuration space Q, where the forbidden regions
in Q are uncertain and are caused by obstacles whose positions in the workspace
are distributed according to bE . Then, the action sequences for expanding b are con-
structed by finding low collision cost paths from the initial configuration 0 to the
sampled sub-goals, in QbE . The details on how the action sequences are generated
are in Section 6.

5.3 Belief space metric

To compute distance between beliefs in B (line 11 & 15 of Algorithm 1), GCS uses
Wasserstein distance, a metric that is dependent on the underlying state space metric.
The Wasserstein distance WD(b,b′) between two beliefs b,b′ ∈ B is the minimum
expected distance in S among all possible joint densities whose marginal densities
are b and b′. More precisely we use the squared 2nd Wasserstein distance,

DB(b,b′) =WD(b,b′) = inf
f

{∫
s∈S

∫
s′∈S

DS(s,s′) f (s,s′)dsds′

| b =
∫

s′
f (s,s′)ds′,b′ =

∫
s

f (s,s′)ds
}

(4)

where DS is L2 norm in S and f (s,s′) is joint density function.
Compared to KL-divergence, which is commonly used in POMDPs with contin-

uous S, Wasserstein distance is a true metric. This makes analysing approximation
bound using Wasserstein distance easier than using KL-divergence.

Furthermore, Wasserstein distance is more suitable than KL-divergence, denoted
as KL, for goal-reaching tasks, which is common in motion planning. As an illus-
tration, consider a 1D navigation problem where the robot’s position is not known
exactly. The state space here is R. Suppose the goal is g and the goal belief bg is
a belief where the support is all points in [g− 1,g+ 1]. Now, suppose b is a belief
where the support is all points in [g− 100,g− 99] and b′ is a belief where the sup-
port is all points in [g−5,g−3]. Then, regardless of the exact distribution, KL(b,bg)
and KL(b′,bg) are both undefined, even though the robot is actually much closer to g
when it is at b′ than when it is at b, assuming the robot’s belief is a good estimate of
the robot’s true position. On the other hand, WD(b′,bg)<WD(b,bg), as desired.

The Wasserstein distance satisfies the Lipschitz condition,

Theorem 2 In an LS-continuous POMDP with parameter (KRS,KZ) and normalized
observation space, for any two beliefs b,b′ ∈ B and any policy π , if WD(b,b′)≤ δ ,

then |Vπ(b)−Vπ(b′)| ≤ 2
(

KRS
1−γ

+ γKZRmax
(1−γ)2

)
δ , where Rmax is the maximum possible

immediate reward. 1

This property means that two nearby beliefs under this metric have similar values,
and hence with a small error, one can be used to represent the other.
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5.4 Backup

The function BACKUP(b) for b∈ T (line 18 of Algorithm 1) finds a path from b to the
root of T and performs point-based backup at each belief in the path, starting from
b to the root node. It can use a slight modification of any backup computation for
continuous S and O (e.g., [2,21,25]). The modification accommodates continuous
control space, i.e.

ĤbV (b) = max
(a1,...,al)∈outEdge(b)

{
R(b,(a1,a2, . . . ,al))+ γ

l
∫

o∈O
P(o |bl ,al)V (τ(bl ,al ,o))

}
where bl = τ(b,(a1, . . . ,al−1),noObservation) and R(b,(a1,a2, . . . ,al)) = R(b,a1)+

∑
l−1
i=1 γ iT (bi,ai,bi+1)R(bi+1,ai+1) with b1 = b. The approximation results for using

sampled representation for A is in Section 7.

6 Generating action sequences in detail

Algorithm 2 GenerateAnActSeq(bE , L, M)
1: if path set Ψ has not been initialized then
2: Initialize path set Ψ to be an empty set.
3: Initialize sub-goals set G to be an empty set.
4: Set 0 as the initial configuration q0.
5: if path set Ψ is empty then
6: Sample M sub-goals and add them to the sub-goals set G.
7: for all sub-goal g ∈ G do
8: Generate a path from q0 to g, and insert the path to Ψ .
9: Let b1

p be the belief over Q where b1
p(q0) = 1.

10: Choose a path ψ ∈Ψ with the highest estimated total discounted reward. And remove ψ from Ψ .
11: Let (a1,a2, . . . ,al) be the action sequence that corresponds to ψ .
12: Let i = 1.
13: while (i≤ l) and (Q(b1

p,(a1, . . . ,ai))> L) do
14: i = i+1.
15: i = max(i−1,0).
16: if (i < l) then
17: Return (a1, . . . ,ai,sensing).
18: else
19: Return (a1, . . . ,al).

The algorithm to generate action sequences for expanding a node of T is in Algo-
rithm 2. Given a node b ∈ T to be expanded, let’s suppose b lies in C(bE) ∈ C , and
QbE is the robot’s configuration space Q where the forbidden regions in Q are un-
certain and are caused by obstacles whose positions in the workspace are distributed
according to bE . To construct action sequences for expanding b, GCS first samples a
set of sub-goals in QbE and constructs an uncertainty roadmap to generate paths from
the initial configuration 0 to each sub-goal. The action sequences for expanding b is
then the paths from 0 to the sub-goals in the uncertainty roadmap.

6.1 Sampling sub-goals

The sampled sub-goals consist of two types, i.e., sensing sub-goals and ending sub-
goals. Recall from Section 4 that GCS constructs two types of action sequences, i.e.,
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sequences with a single sensing action located at the end and sequences with no
sensing action. GCS constructs the first type of action sequences based on paths from
0 to sensing sub-goals in QbE . And constructs sequences with no sensing action based
on paths from 0 to ending sub-goals in QbE .

The sensing sub-goal in QbE is used as a guide of where sensing action in B
should be performed. To keep the size of T small, we would like to perform a sensing
action only when sensing significantly reduces the robot’s uncertainty about its state.
Therefore, as a heuristic, GCS samples sensing sub-goals to be configurations in QbE

that have high probability of perceiving “useful” observations. More precisely, GCS
samples sensing sub-goals using density function

fsensing(q) ∝

∫
o∈O

Z(〈q,bE〉,sensing,o)U(q,o)do (5)

where Z(〈q,bE〉,sensing,o) is the probability that the robot at configuration q ∈ QbE

perceives o when the environment uncertainty is bE , and is defined as
∫

e∈E Z(〈q,e〉,sensing,o)bE(e)de.
For computational efficiency, GCS computes the density based only on Zvis, instead
of the complete definition of observation function in (2). The function U(q,o) is a
utility function that indicates the use of perceiving observation o from configuration
q, and is defined based on how much perceiving o from q reduces the entropy of bE .
Suppose b′ = τ(〈q,bE〉,sensing,o), b′E is the marginal distribution of E in b′, and
H(.) is differential entropy. Then, U(q,o) = H(bE)−H(b′E).

To sample ending sub-goals, GCS biases sampling towards configurations that
have high expectation to be in the goal region. More precisely, GCS samples ending
sub-goals using density function

fending(q) ∝

∫
e∈E

Igoal(q,e) ·bE(e)de where Igoal(q,e) =

1 if q is inside the goal region
of environment e ∈ E.

0 otherwise.
(6)

6.2 Path construction

Goal

QbE

0

Goal

QbE

0

Goal

QbE

G(bE)

0

(a) (b) (c)

Fig. 3 The uncertainty roadmap G(bE ) in QbE . The grey circles are the sensing sub-goals. The black
circles are the ending sub-goals. (a) The initial roadmap. It contains only the initial configuration 0 and
the sampled sub-goals. These nodes are the root of the trees. (b) The trees are expanded until there is at
least one path from 0 to each sub-goal. (c) The constructed paths. When a tree with a sensing sub-goal as
root is connected to a tree with an ending sub-goal as root, GCS generates two paths related to the sensing
sub-goal. One is a path from 0 to the sensing sub-goal, which translates to a sequence of actions with a
sensing action at the end. Another is a path from 0 to the ending sub-goal via the sensing sub-goal, which
translates to a sequence of actions with no sensing action.
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To construct low collision-cost paths from the initial configuration 0 to the sub-
goals, GCS constructs an uncertainty roadmap G(bE) in QbE . An uncertainty roadmap
is a roadmap where each milestone and edge has collision cost lower than a given
threshold colth. Each edge vv′ in G(bE) corresponds to a control sequence that moves
the robot from v to v′, when the robot’s motion is deterministic.

GCS constructs G(bE) using a slight modification of the Sampling-based Roadmaps
of Trees (SRT) [20] strategy. To adapt to the environment map uncertainty, GCS uses
the method in Bounded Uncertainty Roadmap (BURM) [8] for collision check. GCS
starts by initializing the roadmap G(bE) with |G|+1 trees. The initial configuration
0 and each sub-goal in G becomes the root of a tree in G(bE). Each tree is expanded
using the Expansive Space Tree (EST) [11] strategy. GCS alternates expanding each
tree until there is a path with collision cost lower than the given threshold colth from 0
to each sub-goal in G(bE). The threshold is set adaptively, starting from zero, which
means only collision-free paths in QbE is used. When GCS fails to find a path after a
large number of samples, it increases the threshold, allowing paths with low collision
probability to be used. This process is repeated whenever needed until a path can be
found. GCS stops expanding a tree whose root is a sub-goal g ∈ G, once a path from
0 to g is found, so that more resources can be used to connect 0 to other sub-goals.
Each path from the initial configuration 0 to a sub-goal in G(bE) is inserted to the
path set Ψ . Figure 3 shows an illustration of G(bE) and its construction.

Every time the belief b ∈ T is chosen to be expanded, a path from Ψ is used for
expansion and then deleted from Ψ . When Ψ becomes empty, GCS inserts new paths
to Ψ . For this purpose, GCS samples additional sub-goals following the sampling
criteria in Section 6.1 and inserts the newly sampled sub-goals to the sub-goals set
G. It then constructs and inserts a path from 0 to all sub-goals in G. For each new
sub-goal g ∈ G, GCS adds a new tree with root g to the uncertainty roadmap G(bE)
and constructs a path from 0 to g using the above strategy. For a sub-goal g that has
been in G before, GCS constructs a new path from 0 to g that are different from
the existing paths in G(bE). These paths are constructed using the same strategy as
above. GCS inserts all new paths, from 0 to the sub-goals, in G(bE) to the paths set
Ψ , and ignores paths that have been used for expanding the belief node b.

Each path ψ ∈Ψ corresponds to a control sequence. Suppose (u1,u2, . . . ,uk),
where ui ∈U for i∈ [1,k], is the control sequence that corresponds to ψ . Then, the ac-
tion sequence constructed from ψ , is the same as the control sequence (u1,u2, . . . ,uk)
if ψ ends at an ending sub-goal, and the same as the control sequence appended with
a sensing action, i.e., (u1,u2, . . . ,uk,sensing), if ψ ends at a sensing sub-goal.

6.3 Which path to use first?

Ideally, we want to prioritize using action sequences that are more likely to sample
beliefs in the optimally reachable set, to enable faster construction of the optimal
policy. For this purpose, to each path ψ ∈Ψ , GCS assigns an estimate Ṽ (ψ) of the
total discounted reward, if we follow the path and continue with an optimal strategy
afterwards. The path with highest estimated total discounted reward is used first.

For computational efficiency, GCS computes the estimated total discounted re-
ward Ṽ (ψ) by assuming that the robot’s motion is deterministic. Suppose the action
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sequence constructed from ψ is (a1,a2, . . . ,al). The estimated value is computed as
Ṽ (ψ) = totCost(ψ)+h(ψ). The function totCost(ψ) is the total discounted reward
for performing (a1,a2, . . . ,al). More precisely,

totCost(ψ) =
∫

e∈E
bE(e)

l−1

∑
i=0

γ
i (Raction(〈qi,e〉,ai+1)+Rcollision(〈qi,e〉,ai+1))de

where qi for i∈ [1, l] is the configuration reached by the robot after performing ai from
configuration qi−1, assuming that the robot’s motion is deterministic, and q0 = 0. The
function h(ψ) is an upper bound on the total expected discounted reward for reaching
a goal feature from ql in QbE .

6.4 From a path in QbE to an action sequence

For computational efficiency, before expanding b using an action sequence (a1,a2, . . . ,al)
constructed from a path ψ ∈Ψ , GCS revises the action sequence based on whether
expanding b using (a1,a2, . . . ,al) would improve the current policy or not (line 13–17
of Algorithm 2). For this purpose, GCS finds the longest sub-sequence (a1,a2, . . . ,am)
(m ≤ l) of (a1,a2, . . . ,al) that may still improve the current policy and use this sub-
sequence, instead of the full sequence, for expanding b. To find such a sub-sequence,
GCS finds the longest sub-sequence whose Q-value’s upper bound Q(b,(a1,a2, . . . ,am))
is larger than the value Vπ(b) of b under the current policy π .

7 Approximation bound

Our main concern is how sampled representation of the action space A affects the
quality of the generated policy. Approximation results are available when sampled
representation of S and O are used [2,21]. However, no results are available when
sampled representation of A is used. Here we show that when the POMDP prob-
lem satisfies LS-continuous and LA-continuous properties, the optimal policy can be
approximated proportional to the sampling dispersion of A.

For clarity, we analyze a simplified version of GCS. We assume that the belief
tree T is expanded using a primitive action, instead of a sequence of actions. In this
case, the partition P of A (Definition 2) is {U,{sensing}}.

Theorem 3 Consider a POMDP that is LS-continuous with parameters (KRS,KZ),
and LA-continuous with parameters (KRA,h) and action partition P . Suppose the
distance between two nearest sampled actions in any P ∈P is ≤ δA, the distance
between two nearest sampled beliefs is ≤ δB, and the maximum immediate reward is
Rmax. Then, 1

|V ∗(b′)−Vt(b′)| ≤ 1
1−γ

(
KRAδA +

(
KRS
1−γ

+ KZRmax
(1−γ)2

)
(4δB + γh(δA))

)
Since h is an increasing function with h(0) = 0, |V ∗(b′)−Vt(b′)| converges to zero
as δB and δA goes to zero. Similar results hold for GCS as described in Section 4
and Section 5. However, the terms in the approximation bound becomes much more
complex, and hinders understanding.
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8 Experimental setup and results

8.1 Scenarios

We tested GCS on simulations

Fig. 4 Traditional fishing farms, called kelong, is quite com-
mon in coastal zones of Singapore, Indonesia, and Malaysia.

of three scenarios (Figure 5) of an
Autonomous Surface Vehicle (ASV)
navigating in a coastal zone popu-
lated by traditional fishing farms,
called Kelong (e.g., Figure 4). The
motivation for these scenarios comes
from the mass death of fishes that
has happened several times in Sin-

gapore water. To understand and prevent this phenomena from happening again, ma-
rine scientists need physical, biological, and chemical data of certain positions around
the fishing farms, at various different times of the year. For this purpose, we plan to
deploy an ASV to automatically gather these data. Now, the ASV uses sonar to help
avoid fishing traps that lies underwater near the fishing farms, but each beam gen-
erated by the sonar disturbs marine life, including the fishes in the fishing farms.
Therefore, the ASV uses an active sensing mechanism, so that it can perform as lit-
tle sensing as possible, while reaching the goal region as fast as possible without
colliding with any of the structures and fishing traps in the farms.

In all three scenarios, an imperfect environment map is available a priori. The
main challenge in operating near Kelongs is avoiding the fishing traps that are at-
tached underneath the structures at the Kelongs. In general, these traps surround the
underwater part of the structures and are at varying distance from the structures. Our
map models the position of these fishing traps.

Our map uses bounding polygons to represent the fishing traps. The positions of
the polygons’ vertices are uncertain and are represented as probability distribution
with a bounded support. Our map can be constructed a priori by scanning the envi-
ronment using a sonar mounted underneath an ASV (similar to the ASV setting in
[18]), and applying a SLAM algorithm. However, the error in the constructed map
needs to be adjusted to take into account the effect of water currents on the struc-
tures in these fishing farms. These structures are made from floating platforms with
weights tied underneath. Due to water currents, the structures may move, but due to
the weights, they can only move up to a certain limit and their movement is relatively
slow. Therefore, it is safe to assume that the structures and traps are stationary during
the ASV’s operational period, but we can not assume that their positions remain the
same as when the map was generated. To incorporate the effect of water currents to
the error in environment map, we can use water currents prediction, which also has
uncertainties and is represented as probability distribution. As a result of this error
adjustment, the error distribution in the environment map may become multi-modal
even when the result of SLAM algorithm is uni-modal. However, the support of the
error can be bounded, as the structures can only move within a certain limit.

The ASV’s configuration is defined by its position in a 2D plane and heading. It
has holonomic control and its maximum speed is 2m/s. We discretize the time, with
each time step is 0.5s. Due to control error and water currents, whenever a control u is
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Parking. Navigation-1. Navigation-2.

Fig. 5 Initial beliefs of the scenarios. Above: The possible initial robot and environment configurations
in the global coordinate system. Below: The possible initial robot and environment configurations in the
robot’s local coordinate system. Circles marked the goal regions. The yellow pentagon and hexagon are
the ASVs.

applied for one time step to a configuration q, the robot moves to a new configuration
q′ = q+u+N, where N is a uniform distribution over a subset of R2×S centered at
q+u with size 5cm×5cm×0.360.

The ASV is equipped with a sonar, attached underneath. In this paper, we use
a simplified sensor model. We assume the sonar has 3600 field of view and a range
limit of 10m. We set Zvis to be 0.9. Feature-i is seen at position oi according to the
following distribution,

oi =

(
(dist(q,ei)+Nd)× cos(bearing(q,ei)+Nb)
(dist(q,ei)+Nd)× sin(bearing(q,ei)+Nb)

)
where dist(q,ei) is the distance between the actual position of feature-i ei and the
robot’s centroid at configuration q, and bearing(q,ei) is the direction of ei from the
robot’s centroid at configuration q. The notation Nd defines the noise in range mea-
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surement. It is distributed uniformly over an interval of [−50cm,50cm]. The nota-
tion Nb defines the noise in bearing measurement. It is distributed uniformly over
[−1.80,1.80] interval. We assume that when a feature is located outside the visibility
region of q, the feature is not visible. We assume that our operating environment is
GPS-denied. Due to obstructions from piers and other structures near coastal zones,
GPS error is around 10m, which is too large for navigation in cluttered marine envi-
ronment.

As an objective function, we define the cost for each control action to be -1, while
the cost for each sensing action to be -5,000. Since sonar waves disturb underwater
life, including fishes in the fishing farms, sensing becomes undesirable. A high sens-
ing cost is used to discourage unnecessary sensing. Each collision incurs a -100,000
penalty. A reward of 10,000,000 is given when the goal is reached.

8.2 Experimental setup

For each scenario, we ran GCS to generate 30 policies, as GCS uses random num-
bers. Each policy is generated for 10min. To estimate the expected total reward of
each policy, we ran 100 simulation runs and computed the average total discounted
rewards.

For comparison, we use BURM [8] and reactive greedy strategy [3]. BURM
takes into account uncertainty in the environment map only. Comparison with BURM
would show the importance of taking into account motion and sensing uncertainty.
We ran BURM to generate 30 different paths. Each path is considered as an open-loop
policy. To estimate the expected total reward of each path, we ran 100 simulation runs
and compute the average total discounted rewards. Variants of reactive greedy strat-
egy are often used in ASVs. Our ASV has used [3]. The strategy uses continuous
sensing to handle motion, sensing, and environment uncertainty. Comparison with
this strategy would show how we perform compared to the current practice in marine
robotics.

We can not compare with existing POMDP planners because the state space is too
large for even the best planners (HSVI2 [23] and SARSOP [15]). As an illustration,
in an environment with only two squares as obstacles, if we discretize the possible
position of each feature into only 4 cells, the possible robot’s position into 10× 10
cells, and the robot’s possible heading into 4 cells, |S| > 2.5×107, which is beyond
the capability of HSVI2 and SARSOP.

All planners were implemented in C++, and ran in a PC with 2.27GHz Intel pro-
cessor and 1.5GB RAM.

8.3 Experimental results

Table 1 shows GCS outperforms BURM and reactive greedy strategy. By performing
global planning while taking into account all three sources of uncertainty, GCS gen-
erates motion strategies that reach the goal with much higher probability and much
lower cost.

An underlying assumption of active sensing problems that GCS exploits is that
sensing is relatively expensive compared to the cost of other actions. The high sensing
cost implies that an optimal policy in active sensing problems tend to use a small
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Expected Total Discounted Reward and Success Rate

Scenario BURM Reactive greedy GCS (10 min)
E[total] %success E[total %success E[total] %success

disc. reward] disc. reward] disc. reward]
Parking -395,632 0 3,346,221 45 8,748,667 80

Navigation-1 -1,242,902 0 -662,019 0 8,097,961 74
Navigation-2 -1,697,339 0 -761,415 0 8,642,707 81

Table 1 Comparison results

number of sensing. As discussed in Section 4, small number of sensing implies that
the set of optimally reachable beliefs R∗(b0) is small and has a nice structure that can
help in generating a sufficient sampled representation of R∗(b0), and hence a good
approximation to the optimal policy. Careful exploitation of R∗(b0) structure is key
to the good performance of GCS.

(a)

(b)

Fig. 6 Typical simulation runs of the policies generated by GCS in the Parking scenario. Orange: Particles
representing the robot’s belief over its environment. Green: The actual environment with circles marking
the goal regions. Yellow: the ASV path. Red dot: sensing position.

Figure 6 shows two typical runs of the policies generated by GCS in the Park-
ing scenario. In this scenario, the marginal distribution of E in the initial belief is
essentially bi-modal. In one modality, the parking region (represented as polygons) is
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located near the left side of the environment, while in the other, it is located near the
right side. Within each modality, the exact position of each vertex is also not known.
Figure 6(a) shows that when the ASV runs a policy generated by GCS, it first moves
to a position near the left side, where useful sensing data may be generated with high
probability, and performs sensing from there. It tries to assess if the true environment
is located around the left region. But due to sensing uncertainty, the ASV fails to get
sensing data. Based on this event, the ASV updates its belief. The updated belief still
has non-zero probability that the structures are located at the left region, because a
feature may not be visible even though it is within the visibility region of the robot.
However, the updated belief has higher probability that the true environment is near
the right side. This higher probability can be seen from the fact that the particles
near the right side of the environment in the middle picture of Figure 6(a) are denser
compared to those in the left picture. Utilizing the information in the updated belief,
the ASV moves to the right region where useful sensing data may be generated with
high probability. This time, the ASV manages to get sensing data on the features and
hence can assess the true environment much better. Although the exact environment
is still not known, the ASV knows enough to park safely. So, instead of sensing the
environment further, the ASV continues to park at the goal region and then terminates
its operation. Figure 6(b) shows the case where the first sensing is a success. In this
case, the ASV directly continues to park at the goal region and terminates its oper-
ation. These simulation runs show that GCS generates policies that enable an ASV
to carefully assess its environment, taking into account sensing errors, before finally
moving to accomplish the given task with lowest cost possible.

Fig. 7 Typical simulation runs of the policies generated by GCS in the Navigation-2 scenario. The meaning
of colors is the same as those in Figure 6.

For Navigation-1 and Navigation-2, one tends to think that the optimal strategy
would be to not do any sensing and directly go to the goal region via the wide open
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passage on the top. But, this is not true. The accumulation of error in ASV’s motion
causes the ASV configuration to be quite uncertain after following a long path. There-
fore, due to the limitation in operating area, when the environment map uncertainty
is high, the ASV is likely to collide with the obstacles if it moves from the start to the
goal via the wide open passage without ever sensing its environment.

When the ASV runs the policies generated by GCS, the results of Navigation-1
and Navigation-2 show similar trend. Here, we show a typical simulation run (Fig-
ure 7) for Navigation-2, which is the more complex environment. The ASV starts by
moving to a region where sensing may generate useful data with high probability. No-
tice that it tries to sense very near to the mouth of the passage. This strategy reduces
the error in the position of the seen features. Since sensing error is defined with re-
spect to range and bearing, the position of the seen features would have smaller error
when the ASV is close to the features. A more accurate information on the position
of these two features results in better inference on the position of the entire structures,
which then enables the ASV to reach the goal region safely without further sensing.
These results indicate that GCS generates policies that enable the ASV to strategi-
cally decide where it should sense the environment, so that each sensing generates
maximum benefit.

9 Conclusion

This paper proposes a new global motion planner under motion, sensing, and en-
vironment map uncertainty for robots with active sensing mechanism. We call our
new planner Guided Cluster Sampling (GCS). GCS is a point-based POMDP plan-
ner that uses domain specific properties to construct a more suitable sampling strat-
egy. Simulation results show that GCS successfully solves motion planning problems
with uncertain motion, sensing, and environment map that are unsolvable by the best
POMDP planners today, within reasonable time.

GCS is designed for POMDPs with continuous state, action, and observation
spaces. We showed that for a class of POMDPs that often occur in motion plan-
ning problems, given enough time, GCS converges to the optimal policy. To the best
of our knowledge, this is the first convergence result for point-based POMDPs with
continuous action space.

Our simulation and theoretical results indicate that GCS provides an efficient and
mathematically principled way for balancing sensing and acting to accomplish the
given tasks, in the presence of various types of uncertainties.
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Appendix

To prove Theorem 1 and Theorem 2, we use α-function as the policy representation. The policy π is
represented by a set of α-functions Γ , where π(b) = argmaxα∈Γ

∫
s∈S α(s) ·b(s)ds. Each α-function cor-

responds to a policy tree Tα . Each node in Tα corresponds to an action and each edge corresponds to an
observation. The value α(s) is the expected total reward of executing Tα from s. Let a0 denotes the root
of Tα and let’s use the same notation to denote a node and its corresponding action. Then, executing Tα

starting from s means that the robot at state s starts execution by performing a0. An arc from a0 to a node
at the next level of Tα is followed, based on the observation perceived. Suppose the arc points to node a1,
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then at the next step, the robot performs a1. This process is repeated until a leaf node is reached. The value
α(s) can be written as,

α(s) = R(s,a0)+ γ

∫
s1∈S

∫
o∈O

T (s,a0,s1)Z(s1,a0,o1)αa0o(s1)dods1 (7)

where αa0o is the α-function that corresponds to the sub-tree of Tα whose root is the child of a0 via edge
o.

A Proof of Theorem 1

To prove the theorem, we first show that for any α-vector, α(s) = α(g(s)). For this purpose, we show
that for any function f : S→ S that does not change the robot’s relative configuration with respect to the
environment, α(s) = α( f (s)). Since g is an instance of such function, α(s) = α(g(s)), too.

We prove α(s) = α( f (s)) by induction on the levels of Tα . When Tα has only one level, α(s) =
R(s,a0). Since the reward function depends only on the relative configuration of the robot and since ap-
plying f to s does not change this relative configuration, α(s) = R(s,a0) = R( f (s),a0) = α( f (s)). As-
sume that for any f , any α , and any s ∈ S, α(s) = α( f (s)) when Tα has i levels. Now, we show that
α(s) = α( f (s)) when Tα has (i+ 1) levels. The key is to show that applying f to s does not change the
integration term in (7). Let’s first look at the transition function. Based on property-1 of LS-continuous,
we have T (s,a0,s1) = T ( f (s),a0,s′1) where s′1 = s1 +( f (s)− s). Since, the displacement vector ( f (s)− s)
does not change the relative robot’s configuration with respect to the environment, the relative robot’s
configuration at s1 is the same as that at s′1. Since Z depends only on the relative robot’s configuration,
Z(s1,a0,o) = Z(s′1,a0,o) for any o ∈ O. Using the result from level-i, α(s1) = α(s′1). Hence, the inte-
gration term of (7) for α(s) and α( f (s)) are the same. This result and the fact that the reward function
depends only on the robot’s relative configuration, gives us α(s) = α( f (s)). Now, we prove that for any
policy π , Vπ (b) =Vπ (Trans f orm(b)). Let R be a partition of S, such that each set Rs ∈R consists of all
states in S where the robot’s relative configurations with respect to the environment, is the same as that of
s. This means that each state in the same set of R has the same α-value. And hence we can write,

Vπ (b) = max
α∈Γ

∫
s∈S

α(s) ·b(s) = max
α∈Γ

∫
Rs∈R

α(s)
∫

s′∈Rs
b(s′). (8)

From the definition of Trans f orm in (3), (Trans f orm(b))(s) =
∫

s′∈Rs
b(s′). Therefore, (8) can be rewritten

as Vπ (b) = maxα∈Γ

∫
Rs∈R α(s) · (Tran f orm(b))(s) =Vπ (Trans f orm(b)), which is the result we want. 2.

B Proof of Theorem 2

To prove Theorem 2, we first need the following lemma.

Lemma 1 In an LS-continuous POMDP with parameter (KRS,KZ) and normalized observation space, for

any α-function and any state s,s′ ∈ S, |α(s)−α(s′)| ≤
(

KRS
1−γ

+ γKZ Rmax
(1−γ)2

)
DS(s,s′).

Proof of Lemma 1. Using the definition of α value in (7) and the triangle inequality, we have

|α(s)−α(s′)| ≤
∣∣R(s,a0)−R(s′,a0)

∣∣+ γ

∣∣∣∣∫s1∈S

∫
o∈O

T (s,a0,s1)Z(s1,a0,o)αa0o(s1)dods1 −∫
s1∈S

∫
o∈O

T (s′,a0,s1)Z(s1,a0,o)αa0o(s1)dods1

∣∣∣∣ (9)

Based on property-3 of LS-continuous, we can bound the first absolute term on the right hand side of (9)
as |R(s,a0)−R(s′,a0)| ≤ KRSDS(s,s′).
Now, we bound the second absolute term on the right hand side of (9). Let d = s′− s. Property-1 of LS-
continuous gives us T (s,a0,s1) = T (s′,a0,s1 + d). Hence, we can rewrite the last absolute term in (9)
as, ∣∣∣∣∫s1∈S

T (s,a0,s1)
∫

o∈O

(
Z(s1,a0,o)αa0o(s1) −Z(s1 +d,a0,o)αa0o(s1 +d)

)
dods1

∣∣∣∣ .
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Using property-2 of LS-continuous, we have Z(s1 +d,a0,o)≥ Z(s1,a0,o)−KZ ·DS(s1,s1 +d).
Substituting the above bounds to (9) gives

|α(s)−α(s′)| ≤ KRS ·DS(s,s′)+ γ

∣∣∣∣∫s1∈S
T (s,a0,s1)

∫
o∈O

Z(s1,a0,o)
(
αa0o(s1)−αa0o(s1 +d)

)
do +∫

o∈O
KZ ·DS(s1,s1 +d)αo(s1 +d)do

∣∣∣∣
≤
(

KRS

1− γ
+

γKZRmax

(1− γ)2

)
DS(s,s′)

The last inequality holds, after αa0o is expanded recursively and assuming that O is normalized. 2.
Now, we proof Theorem 2. Let Vπ (b) = α ·b and Vπ (b′) = α ′ ·b′. Then, there must always be a point

bc = ab+(1−a)b′ such that α ·bc = α ′ ·bc, as α ·b≥ α ′ ·b and α ′ ·b′ ≥ α ·b′

|V ∗(b)−V ∗(b′)| = |α ·b−α
′ ·b′|

≤ |α ·b−α ·bc|+ |α ′ ·bc−α
′ ·b′| (10)

Suppose f is the joint density function used in computing WD(b,bc) with b(s) =
∫

s′∈S f (s,s′)ds′ and
bc(s′) =

∫
s∈S f (s,s′)ds. And suppose g is the joint density function used in computing WD(bc,b′) with

bc(s) =
∫

s′∈S g(s,s′)ds′ and b′(s′) =
∫

s∈S g(s,s′)ds. Then, we can rewrite (10) as,

|V ∗(b)−V ∗(b′)| ≤
∣∣∣∣∫s∈S

α(s)
∫

s′∈S
f (s,s′)ds′ds−

∫
s′∈S

α(s′)
∫

s∈S
f (s,s′)dsds′

∣∣∣∣+∣∣∣∣∫s∈S
α
′(s)

∫
s′∈S

g(s,s′)ds′ds−
∫

s′∈S
α
′(s′)

∫
s∈S

g(s,s′)dsds′
∣∣∣∣

≤
∫

s∈S

∫
s′∈S

f (s,s′)
∣∣α(s)−α(s′)

∣∣ds′ds+
∫

s∈S

∫
s′∈S

g(s,s′)
∣∣α ′(s)−α

′(s′)
∣∣ds′ds

Substituting the difference between α values in the above inequality with the result of Lemma 1, and using
the definition of Wasserstein distance give us,

|V ∗(b)−V ∗(b′)| ≤
(

KRS

1− γ
+

γKZRmax

(1− γ)2

)(
WD(b,bc)+WD(bc,b′)

)
Using the convexity property of WD, we get the desired result. 2.

C Proof of Theorem 3

To proof Theorem 3, we first need the following lemma that bounds the error generated by a single backup
operation.

Lemma 2 Consider a POMDP that satisfies LS-continuous with parameter (KRS,KZ) and LA-continuous
with parameter (KRA,h). Suppose the sampling dispersion in each element of P is ≤ δA. Then, the error

generated by a single simplified GCS backup at a belief b is bounded as, |HV (b)− ĤbV (b)| ≤ KRAδA + γ

(
KRS
1−γ

+ KZ Rmax
(1−γ)2

)
h(δA).

Proof of Lemma 2. To shorten the proof writing, let’s use the Q-value notation. For any b ∈ B and any
a ∈ A,

Q(b,a) =
∫

s∈S
R(s,a)b(s)ds+ γ

∫
s∈S

∫
s′∈S

∫
o∈O

T (s,a,s′)Z(s′,a,o)b(s)α(s′)dods′ds (11)

The single backup error is then,∣∣HV (b)− ĤbV (b)
∣∣ = max

P∈P
max
a∈P

Q(b,a)−max
P∈P

max
a∈Samp(P)

Q(b,a)

≤ max
P∈P

(Q(b,a∗P)−Q(b, â∗P)) (12)
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where Samp(P) is the sampled representation of P ∈P ,
a∗P = argmaxa∈P Q(b,a), and â∗P = argmina∈Samp(P) DP(a,a∗P).

Let’s compute Q(b,a∗P)−Q(b, â∗P) for an element P of P . For writing compactness, we drop the P
subscript. Using (11) and triangle inequality, we get

Q(b,a∗)−Q(b, â∗) ≤
∫

s∈S
|R(s,a∗)−R(s,a)|b(s)ds+ γ

∫
s∈S

b(s)
∣∣∣∣∫s′∈S

∫
o∈O

T (s,a∗,s′)Z(s′,a∗,o)b(s)α(s′)dods′−∫
s′∈S

∫
o∈O

T (s, â∗,s′)Z(s′, â∗,o)α(s′)dods′
∣∣∣∣ds (13)

Using property-3 of LA-continuous, we bound the first term in the right hand side as
∫

s∈S |R(s,a∗)−R(s,a)|b(s)ds≤
KRAδA. Using property-1 of LA-continuous, T (s,a∗,s′) = T (s, â∗,s′ + f (a∗, â∗). Therefore, (13) can be
rewritten as,

Q(b,a∗)−Q(b, â∗) ≤ KRAδA + γ

∣∣∣∣∫s∈S

∫
s′∈S

b(s)T (s,a∗,s′)
∫

o∈O

(
Z(s′,a∗,o)α(s′)−Z(s′+ f (a∗, â∗), â∗,o)α(s′+ f (a∗, â∗))

)
dods′ds

∣∣∣∣
Since a∗ and â∗ belong to the same element of P , using property-2 of LA-continuous, we get Z(s′ +
f (a∗, â∗), â∗,o)=Z(s′+ f (a∗, â∗),a∗,o). Using property-2 of LS-continuous, we get Z(s′+ f (a∗, â∗),a∗,o)≥
Z(s′,a∗,o)−KZDS(s′,s′+ f (a∗, â∗)). Using these properties and the assumption that O is normalized, re-
arranging the above inequality gives us

Q(b,a∗)−Q(b, â∗) ≤ KRAδA + γ

∣∣∣∣∫s∈S

∫
s′∈S

b(s)T (s,a∗,s′)
(

KZDS(s′,s′+ f (a∗, â∗))α(s′+ f (a∗, â∗))+∫
o∈O

Z(s′,a∗,o)
(
α(s′)−α(s′+ f (a∗, â∗))

)
do
)

ds′ds
∣∣∣∣

≤ KRAδA + γ

(
KRS

1− γ
+

KZRmax

(1− γ)2

)
h(DP(a∗, â∗))

The last inequality holds based on three properties: (1) any α value does not exceed Rmax
1−γ

, (2) property-1
of LA-continuous, i.e., DS(s′,s′+ f (a∗, â∗))≤ h(DP(a∗, â∗)), and (3) Lemma 1.

Using the above inequality and the fact that for any P ∈P , DP(a∗P, â
∗
P) ≤ δA, and h is an increasing

function,
∣∣HV (b)− ĤbV (b)

∣∣≤ KRAδA + γ

(
KRS
1−γ

+ KZ Rmax
(1−γ)2

)
h(δA). 2.

Now, we can prove Theorem 3. The difference between the optimal value V ∗ and the value Vt com-
puted by the simplified GCS after t steps are,

|V ∗(b)−Vt(b)| ≤
∣∣V ∗(b)−V ∗(b′)

∣∣+ ∣∣V ∗(b′)−Vt(b′)
∣∣+ ∣∣Vt(b′)−Vt(b)

∣∣ .
Applying Theorem 2 to V ∗ and Vt , and bounding |V ∗(b′)−Vt(b′)| ≤ εt , we get

|V ∗(b)−Vt(b)| ≤ 4
(

KRS

1− γ
+

KZRmax

(1− γ)2

)
δB + εt . (14)

To compute εt , notice that V ∗(b′) = HV ∗(b′) and Vt(b′)≤ ĤbVt−1(b′). Hence,
|V ∗(b′)−Vt(b′)| ≤

∣∣HV ∗(b′)− ĤbVt−1(b′)
∣∣ and the following holds∣∣V ∗(b′)−Vt(b′)

∣∣ ≤ ∣∣HV ∗(b′)−HVt−1(b′)
∣∣+ ∣∣HVt−1(b′)− ĤbVt−1(b′)

∣∣ . (15)

Using the contraction property of H and (14), we can bound the first absolute term on the right hand side
of (15) as |HV ∗(b′)−HVt−1(b′)| ≤ γ

(
4
(

KRS
1−γ

+ KZ Rmax
(1−γ)2

)
δB + εt−1

)
. The last absolute term of (15) can be

bounded using Lemma 2. As a result, we get∣∣V ∗(b′)−Vt(b′)
∣∣ ≤ γ

(
4
(

KRS

1− γ
+

KZRmax

(1− γ)2

)
δB + εt−1

)
+

(
KRAδA + γ

(
KRS

1− γ
+

KZRmax

(1− γ)2

)
h(δA)

)
Expanding the recursion gives us,∣∣V ∗(b′)−Vt(b′)

∣∣≤ 1
1− γ

(
KRAδA +

(
KRS

1− γ
+

KZRmax

(1− γ)2

)
(4δB + γh(δA))

)
,

which is the result we want. 2.


