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Abstract

We propose a neural network architecture,
called TransNet, that combines planning and
model learning for solving Partially Observ-
able Markov Decision Processes (POMDPs)
with non-uniform system dynamics. The past
decade has seen a substantial advancement
in solving POMDP problems. However, con-
structing a suitable POMDP model remains
difficult. Recently, neural network architec-
tures have been proposed to alleviate the diffi-
culty in acquiring such models. Although the
results are promising, existing architectures re-
strict the type of system dynamics that can be
learned - that is, dynamics must be the same
in all parts of the state space. TransNet re-
laxes such a restriction. Key to this relaxation
is a novel neural network module that classifies
the state space into classes and then learns sys-
tem dynamics of the different classes. TransNet
uses this module together with the overall ar-
chitecture of QMDP-Net[Karkus et al., 2017 to
allow solving POMDPs that have more com-
plex dynamic models while maintaining effi-
cient data requirement. Evaluation on typi-
cal benchmarks in robot navigation with ini-
tially unknown system and environment mod-
els indicates that TransNet substantially out-
performs the quality of the generated policies
and learning efficiency of the state-of-the-art
method QMDP-Net.

1 Introduction

Sequential decision making under uncertainty is both
critical and challenging. Partially Observable Markov
Decision Processes (POMDPs) are the general and sys-
tematic frameworks for computing such decision mak-
ing problems. Although finding optimal strategies under
the POMDP framework is computationally intractable,
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advances have been made in computing approximately
optimal strategies[Kurniawati et al., 2008; Silver and
Veness, 2010; Somani et al., 2013]. We now have al-
gorithms that can find near optimal strategies within
reasonable time and have been applied to solve various
realistic robotics problems (e.g., [Bouton et al., 2017;
Chen et al., 2018; Hoerger et al., 2019]).

With POMDP solving becoming practical and
POMDPs becoming used in practice, the problem of gen-
erating a good POMDP model for a given problem be-
comes increasingly important. A POMDP model is de-
fined by six components: The states the system can be
in, the available actions, the observations it can perceive,
system dynamics representing uncertainty in the effect of
actions, an observation function which represents sens-
ing uncertainty, and a reward function from which the
objective function is derived. While the first three com-
ponents are easy to define, the last three are more diffi-
cult due to uncertainty in the system and imperfect or
even non-existent measurements to assess them.

Many machine learning techniques have been proposed
to alleviate this difficulty(Ghavamzadeh et al., 2015;
Arulkumaran et al., 2017]. They can be divided into
two broad classes. First is model-free, where the sys-
tem learns a direct mapping from environment informa-
tion to strategies, bypassing model generation. Second
is model-based, where the system first learns the model,
and strategies are generated by applying model-based
planning techniques to this model.

Recently, deep neural networks have been pro-
posed to combine model-free learning and model-based
planning[Karkus et al., 2017; Tamar et al., 2017]. These
works learn a direct mapping from environment infor-
mation to strategies. However, internally these methods
learn a POMDP model (or in the case of [Tamar et al.,
2017], an MDP model - a sub-class of POMDP where
state is fully observable) and use a planning module, em-
bedded inside the neural network, to generate the strat-
egy. The objective of the model learning component here
is not to generate the most accurate model, but rather



to generate a useful approximate model that will max-
imise policy performance when used together with the
embedded planning algorithm. The results have been
promising.

However, the above networks assume the transition
function in the (PO)MDP problem to be independent
of the states of the system. This assumption means the
system dynamics is assumed to be the same everywhere,
regardless of the geometry of the underlying environ-
ment, which often limits the expressiveness of the model
and restricts the effectiveness of planning. To relax this
assumption, we propose a novel neural network architec-
ture, TransNet.

Key to TransNet is a differentiable neural network
module that learns non-uniform transition dynamics ef-
ficiently by assuming that states with similar local char-
acteristics have similar dynamics. This module divides
the state space into classes, where each class corresponds
to a unique transition function. The transition probabil-
ities for each class are then represented by channels of
a kernel in a convolution layer. This technique allows
distinct transition dynamics to be applied to states with
different local characteristics while still allowing the use
of existing efficient convolutional network implementa-
tions. TransNet uses this novel neural network module
together with the overall architecture of state-of-the-art
QMDP-Net to solve POMDPs with a priori unknown
model and non-uniform transition dynamics.

Simulations on various navigation benchmarks with
and without dynamic elements indicate that compared
to QMDP-Net, TransNet requires substantially less
training time and data to produce policies with better
quality: In some cases, TransNet uses less than 20% of
the training data used by QMDP-Net to generate poli-
cies with similar quality. Our results also indicate that
TransNet provides substantially better generalization ca-
pability than QMDP-Net.

2 Background
2.1 POMDP Framework

Formally, a POMDP[Kaelbling et al., 1998] is described
by a 7-tuple (S, A,O0,T,Z, R,~), where S is the set of
states, A is the set of actions, and O is the set of obser-
vations. At each step, the agent is in some hidden state
s € 9, takes action a € A, and moves from s to another
state s’ € S according to a conditional probability distri-
bution T'(s,a, s’) = P(s'|s, a), called transition probabil-
ity. The current state s’ is then partially revealed via an
observation o drawn from a conditional probability dis-
tribution Z(s',a,0) = P(o|s’,a) that represents sensing
uncertainty. After each step, the agent receives reward
R(s,a), if it takes action a from state s.

Due to uncertainty in the effect of action and in sens-
ing, the agent never knows its exact state. Instead, it

maintains an estimate of its current state in the form of
a belief b, which is a probability distribution over S. At
the end of each step, the agent updates its belief in a
Bayesian manner, based on the belief at the beginning
of the step along with the action and observation that
have been performed and perceived in this step.

The objective of a POMDP agent is to maximize its
expected total reward (value function), by following the
best policy at each time step. A policy is a mapping
from beliefs to actions. Each policy 7 induces a value
function V() for any b € B, which is computed as:

Ve(b) = 3 R(s,7(b)) bls) +7 3 Plolb,w()) Va(¥))

sesS 0€0
(1)

The notation b’ represents the new belief of the agent
after it performs action 7(b) € A and perceives ob-
servation o afterwards. It is computed as b'(s’)
NS 0co Sues Z(s(b),0) T(s.w(b),s) bis) (n is a
normalizing factor). When the planning horizon is in-
finite, to ensure the problem is well defined, rewards at
subsequent time steps are discounted by a constant fac-
tor v € (0,1). The best policy 7* is one that maximizes
the value function at each belief b.

2.2 Related Work

There is a growing body of works that apply model-free
deep learning to solve large scale POMDPs when the
model is not fully known. For instance, [Hausknecht and
Stone, 2015] implemented a variation of DQN [Mnih et
al., 2015] which replaces the final fully connected layer
with a recurrent LSTM layer to solve partially observable
variants of Atari games. The work in [Mirowski et al.,
2016] applied convolutional neural networks with multi-
ple recurrent layers for the task of navigating within a
partially observable maze environment. The learned pol-
icy is able to generalise to different goal positions within
the learned maze, but not to previously unseen maze
environments.

Recently, success has been achieved with methods that
embed specific computational structures representing a
model and algorithm within a neural network and train-
ing the network end-to-end, a hybrid approach which
has the potential to combine the benefits of both model-
based and model-free methods. [Tamar et al., 2017] de-
veloped a differentiable approximation of value iteration
embedded within a convolutional neural network to solve
fully observable Markov Decision Process (MDP) prob-
lems in discrete space, while [Okada et al., 2017] imple-
mented a network with specific embedded computational
structures to address the problem of path integral op-
timal control with continuous state and action spaces.
These works focus only on cases where the underlying
state is fully observable.



By combining the ideas in the above work with re-
cent work on embedding Bayesian filters in deep neu-
ral networks[Jonkowski and Brock, 2017; Haarnoja et
al., 2016; Karkus et al., 2018], one can develop neural
network architectures that combine model-free learning
and model-based planning for POMDPs. For instance,
[Shankar et al., 2016] implemented a network which im-
plements an approximate POMDP algorithm based on
Qnrpp [Littman et al., 1995] by combining an embedded
value iteration module with an embedded Bayesian filter.
Modules are trained separately, with a focus on learning
transition and reward models over directly learning a
policy.

More recently, [Karkus et al., 2017] developed QMDP-
Net, which implements a Qy;pp approximate POMDP
algorithm to predict approximately optimal policies for
tasks in a parameterised domain of environments. Poli-
cies are learned end-to-end, focusing on learning an “in-
correct but useful” model which learns to optimise pol-
icy performance over model accuracy. However, the em-
bedded model is restricted to using a simple transition
model which assumes all states have the same transition
dynamics. The transition function is represented as a
kernel whose depth is the same as the size of the action
space. The same learned kernel is applied to each state
in the state space. This representation of the transition
function enables the dynamics learned for one state to
be generalised to other states, reducing the amount of
training data needed to learn transition dynamics for all
states. But as a result, QMDP-Net cannot represent
non-uniform transition dynamics. TransNet relaxes this
restriction, while maintaining data efficiency.

3 TransNet

TransNet learns a near optimal policy end-to-end, for
acting in a parameterized set of partially observable sce-
narios: We = {W(6)|0 € ©}, where © is the set of all
possible parameter values. Each parameter 6 describes
properties of the scenarios such as obstacle geometry and
materials, position of static and dynamic obstacles, goal
location, and initial belief distribution for a given task
and environment. TransNet assumes that the problems
of deciding how to act in the various scenarios in Wg are
defined as POMDPs with a common state space S, ac-
tion space A and observation space O but without a pri-
ori known transition, action, and observation functions.
TransNet learns the parameterized transition, observa-
tion, and reward functions suitable to generate a good
policy for the set of scenarios in Weg, as it learns the
policy.

Similar to QMDP-Net, TransNet’s overall structure
is a Recurrent Neural Network with two interleaving
blocks: Planning and Belief update. Figure 1(a) illus-
trates this network. However unlike QMDP-Net, in each

block, TransNet uses a neural network module as de-
scribed in the following subsection to learn a transition
function that depends on both actions and local charac-
teristics of the states, rather than actions alone, thereby
allowing more expressive POMDP models to be learnt,
while maintaining data efficiency.

3.1 Learning Non-Uniform Transition

Dynamics
Key to TransNet is a mneural network mod-
ule for learning the transition function of
a set of parameterized POMDPs. Suppose

M) =(S,A,0, fr(.|19), fz(.|19), fr(.|0)) is the POMDP
problem that corresponds to a scenario W () € Wg. To
learn the transition function fr(.|0), the neural network
module represents f7(.|#) by a combination of a learned
kernel and a classification function. The classification
function ¢(s|f) is a surjection that maps each state s € S
to a class index, based on features of the parameter 6.
The kernel represents the probability of transitioning
into each of the states in a local neighbourhood for each
action a € A and each class, with separate channels
representing different pairs of actions and classes. The
pair of action and class index is then used to select the
suitable kernel channel.

Two properties are desirable for the classification func-
tion. First, states with similar local characteristics
should map to the same class, and states with highly
dissimilar characteristics should map to different classes.
Second, the number of distinct state classes produced by
the classification should be large enough to represent the
important distinct modes of the transition dynamics, but
small enough to ensure that information learned about
the dynamics of one state is allowed to generalise to as
many other appropriate states as possible.

To generate the above desirable properties, in this
work, the classification function is constructed by select-
ing a number of features of the scenario parameter 6
which correspond to the local features. The classifica-
tion function ¢(s|f) then maps each state s € S to a
class index based on the combination of feature values
of the state s. Let IV be the number of features and
f1(8)...fn(s) be the values of the features of state s € S.
The classification function c(s) is:

co(s)= Y (M+1)""fi(s)

1<i<N

where M is the maximum value of any feature of any
state s € S. The class index ¢(s) of state s indicates the
transition model to use at s. We denote the image of
this function, which represents the set of possible state
classes, as C.

As an example, in a 2D robot navigation problem
where 6 includes an image indicating whether each cell in



the environment is an obstacle (represented by 1) or free
space (represented by 0), the features can be selected
to be the values of the cells to the north, south, east
and west of the current cell based on this image. The
function c(s) is then defined as fxorth(S) + 2fsoutn(s) +
4 frast(s) + 8fwest(s). When a state s is blocked by
obstacles in only its north and east side for instance,
e(s) =140+440 = 5. Of course, the image does
not have to be binary. It may also represent informa-
tion such as terrain types, obstacle types with different
elasticity, areas of the environment which are subject to
change over time, etc., allowing this representation to
generalise to a wide range of scenarios.

To avoid creating a bottleneck in the network, the clas-
sification function is implemented as a matrix operation
in existing tensor libraries, allowing an image represent-
ing the state classification of every state in the state
space to be computed efficiently for all states at once.
Furthermore, a one-hot mapping is applied to the out-
put of this function, which is then used to index into
the channel corresponding to the local characteristics of
each state using efficient matrix multiplication and sum-
mation operations. An illustration of TransNet for a
problem where the state space S consists of two state
variables, whose size is n and m, respectively, is shown
in Figure 1(b).

The above manual selection of features and algorith-
mic classification could be replaced by an additional con-
volutional neural network, allowing important features
which influence transition dynamics to be learned adap-
tively.

Note that the effect of the TransNet architecture is
not equivalent to simply applying QMDP-net to a state
space augmented with an additional dimension repre-
senting class. While augmenting the state space with a
class variable would permit different transition models
to be learned for different classes, this approach would
not allow classes to be assigned to states at run time
based on observations about the given map, but would
rather only learn an approximate assignment of classes
based on the class distribution of the training set.

Note also that this module is general enough that it
can be combined with any neural network architecture
that embed POMDP/MDP planning with initially un-
known transition function. However, TransNet combines
this module with QMDP-Net and embeds the module
within every planning and belief update block. The fol-
lowing two subsections provide more details on this em-
bedding.

3.2 Planning

The planning component of TransNet consists of a re-
peating block structure in which each block represents a
single step of value iteration and blocks can be stacked

to arbitrary depth to produce any desired planning hori-
zon. Each block takes as input a value image V;(s|6),
and produces as output updated values based on one
additional planning step, V;11(s|f), with the input to
the first block, Vo(s|0), taken from the prediction of the
immediate reward associated with each s € S provided
by fr.

TransNet convolves the input with the neural network
module for learning transition function. This module has
one output channel for each pair (a,c), where a € A and
¢ € C. The result of the convolution is a layer that repre-
sents the QQ-values for each combination of state, action
and class index. Since for any scenario with parameter
0 € O, ¢(s|f) is a surjection, we only need to select Q-
values for the class that matches with ¢(s|f). Therefore,
the Q-values are multiplied with the one-hot represen-
tation of the state class image, before being summed
over the axis corresponding to c¢. This has the effect
of selecting the correct QQ-values for the current 0, and
discarding all other invalid Q-values. These corrected
Q-values are re-weighted by the belief. The maximum of
these corrected Q-values over all a € A is then selected
via a max-pooling layer to produce the updated value
Vi+1(s|0). The architecture of this block is illustrated in
Figure 2(a).

This implementation is a compromise, which sacrifices
space complexity efficiency by computing and temporar-
ily storing Q-values for classes which do not match ¢(s|9)
in order to facilitate the use of existing highly optimised
implementations of convolutional network layers, with-
out which training the network is infeasible.

3.3 Belief Update

A POMDP agent maintains a belief, which is updated
at each time step using a Bayesian filter. To this end,
TransNet interleaves the planning block with the belief
update block. The belief update block takes a prior belief
by, action a; and observation o; as input, and produces
the updated belief by 1 as output, which is stored as the
prior belief for the next action selection.

To compute b, 1, TransNet convolves b; with the neu-
ral network module for learning transition function. The
resulting convolution is an image with one channel for
each pair (a,c), where a € A and ¢ € C, representing
the updated probability of being in each state s € S for
each combination of action and class index. The one-hot
representation of the classes is used to select only the
values for which class matches ¢(s). A one-hot represen-
tation of the action a; applied at time ¢ is then used to
select the values for which action matches a;. The result-
ing belief represents the belief after accounting for the
effect of the transition dynamics, notated as »’. A one-
hot representation of the received observation o; is used
to index into the observation model image predicted by
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Figure 1: TransNet

fz to produce an image indicating the predicted proba-
bility of receiving o, for each state s € S. Finally this is
used to weight b’ to produce the complete updated belief
image, b;y1. The architecture of a belief update block is
shown in Figure 2(b).

4 Experiments
4.1 Experimental Setup

To understand the practical performance of TransNet,
we compared TransNet with state-of-the-art QMDP-
Net. TransNet’s results are based on an implementation
developed on top of the software released by the QMDP-
Net authors, while QMDP-Net results are based on their
released code.

Both networks are trained via imitation learning us-
ing the same set of expert trajectories, with the expert
trajectories generated by applying the Qapp algorithm
to manually constructed ground-truth POMDP mod-
els. Only trajectories where the expert was successful
were included in the training set. The networks inter-
act only with the expert trajectories and not with the
ground-truth model. All hyper-parameters for both net-
works are set to match those used in the QMDP-Net
experiments[Karkus et al., 2017].

Training was conducted using CPU only on a machine
with Intel Core-i7 7700 processor and 8GB RAM. We
tested the networks on four domains:

Gridworld Navigation: A robot navigation prob-
lem in a general 2D grid setting with noisy state transi-
tions and limited observations. The robot is given a map

of obstacle positions, a specified goal location, and ini-
tial belief distribution. The robot must localise itself and
navigate to the goal. At each time step, the robot selects
a direction to move in, and receives a noisy observation
indicating whether an obstacle is present in each of the
“north”, “south”, “east” and “west” directions. The ob-
stacle configuration is generated uniformly at random,
with the constraint imposed that all non-obstacle cells
are mutually reachable via some path.

Maze Navigation: Similar to the gridworld naviga-
tion task, but with obstacle configuration generated us-
ing randomized Prim’s algorithm. This results in expert
trajectories typically being longer than in the general
grid domain requiring longer term planning. This envi-
ronment is also highly dependent on the planner’s ability
to identify dead-end passages.

Dynamic Maze Environments: A navigation
problem in a maze environment with structure that mu-
tates during run-time in a way which qualitatively affects
the optimum policy, designed to measure the robustness
of a policy to dynamic environments.

A magze is initially constructed using randomized
Prim’s algorithm. The maze is divided into 2 partitions,
with 2 cells from the border selected to be gates. At
each time step, exactly one gate is open and the gates
will swap from open to closed and vice versa with certain
probability. The start and goal position are selected such
that a gate swap will cause the optimum solution to be
qualitatively changed. Figure 3 illustrates an example.
Two variations of this scenario are evaluated:
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Figure 2: TransNet architecture. The part of TransNet that learns the transition function is marked by dashed-lines.

V1: The network is trained using only expert trajec-
tories from the static maze navigation task. The envi-
ronment image provided in 8 shows only the positions of
current free spaces and current obstacles, without special
marking for open or closed gates.

V2: The network is
trained using trajecto-
ries based on an expert
which plans on a dynamic
ground truth POMDP
model, allowing the ex-
pert to decide whether to
wait for a nearby closed
gate to open. The en-
vironment image received
by the agent denotes the
position of the gate which
is currently open. This
may allow the agent to
learn to intelligently decide whether to move or wait for
the currently open gate to change. The closed gate is
not represented in the image.

Figure 3: Example of a
9 x 9 dynamic maze environ-
ment in both possible gate
states. Light grey represents
an open gate, dark grey a
closed gate. The agent must
navigate from the red circle
to the blue circle. The red
line denotes the optimal tra-
jectory.

Large Scale Realistic Environments: A naviga-
tion problem in realistic environments modelled on the
LIDAR maps from the Robotics Data Set Repository
[Howard and Roy, 2003] with noisy actions and limited,
unreliable observations. The network is trained on a set
of randomly generated 10 x 10 stochastic grid environ-
ments, with the resulting policy then applied to the re-
alistic environments, which have dimensions in the order

of 100 x 100.

4.2 Results and Discussion

Table 1 presents comparisons on the success rate, average
number of steps, and collision rate of executing the poli-
cies generated by TransNet and QMDP-Net, as well as
the policy produced by the expert agent used to generate
the training trajectories, based on the Qy/pp algorithm
applied to a perfect ground-truth model. Training is con-
ducted until convergence, but policies are outputted at a
regular interval of 50 epochs. Training uses 10,000 differ-
ent scenarios, comprising of 2,000 different environments
and 5 different trajectories per environment. Policy eval-
uation is conducted on 500 different scenarios, compris-
ing of 100 new environments and 5 different trajectories
per environment.

The results indicate that TransNet consistently pro-
duced substantially better policies than QMDP-Net and
out-performs the training expert trajectories more con-
sistently than QMDP-Net. The left side of Table 1
presents the results when training is run until conver-
gence and comparison with the expert trajectory. In
most cases, the number of epochs required to achieve
convergence is lower in TransNet than in QMDP-Net.
Moreover, compared to QMDP-Net, TransNet converges
to policies with better quality. The right side of Table 1
presents the results where the training time are similar,
giving slightly longer time to QMDP-Net. They indicate
that although TransNet requires more training time per
epoch than QMDP-Net, TransNet uses less time to gen-
erate policies with better quality.

The results also demonstrate TransNet is significantly
more robust than QMDP-Net in dynamic environments.
The success rate and collision rate of TransNet are not



Table 1: Performance comparison of TransNet and QMDP-Net. Expert is the QMDP algorithm. D indicates deterministic,
S indicates stochastic. Epochs and time are the number of epochs and training time taken to generate the policy. SR is the

success rate (in %) over all trials.

TL is the average number of steps for successful trials.

CR is the collision rate (in %)

over all steps. 95% CI is the 95% confidence interval. Note that the number of steps required for completion is only directly

comparable when success rates are similar.

Converged Policy

Policy after Similar Training Time

Domain Agent Epochs SR TL (95% CI) CR (95% CI) Time (s) Epochs SR TL CR

Expert 95.0 7 4 (=023) 0 (£0.0)
Grid 10x10 D QMDP-net 248 100.0 5 (+0.20) 2 (+0.8) 1,420 100 817 130 7.1
TransNet 328 100.0 5 (£0.19) 0 (£0.2) 1,310 50 89.8 8.6 7.5

Expert 98.0  15.5 (£1.45) 8 (£0.5)
Grid 10x10 S QMDP-net 754 950 151 (£1.05) 13 9 (+1.8) 3,993 100 624 209 365
TransNet 543 99.8 14.1 (£0.93) 10.0 (£1.2) 3,092 50 96.1 148 13.2

Expert 88.4 15.5 (£1.14) 10.5 (£0.7)
Maze 9x9 S QMDP-net 1,086 73.6 23.8 (£1.90) 29.8 (+1.8) 2,940 100 69.1 20.8 31.2
TransNet 837 97.8 15.6 (£0.94) 15.9 (£1.3) 2,257 50 83.0 18.7 23.6

Expert 85.2  23.3 (£1.84) 13.1 (£0.9)
Dynamic Maze V1 9x9 §  QMDP-net 1,565 710 25.8 (£2.21) 33.9 (£2.3) 2,982 100 621 247 328
TransNet 1,171 97.6 18.6 (£1.02) 16.4 (£1.5) 2,289 50 67.7 23.7 307

Expert 89.8 19.2 (£1.17) 11.8 (£0.9)
Dynamic Maze V2 9x9 S QMDP-net 934 668  22.1 (+1.85) 27.3 (+2.0) 8,129 250 537 249 304
’ TransNet 1,122 87.6 19.1 (£1.45) 15.5 (£1.1) 7,902 50 63.5 226 20.8

substantially degraded by the introduction of dynamic
environment elements, and performance remains at or
above the level of the QMDP expert trajectories.

Another key result is that TransNet was able to con-
sistently produce a higher success rate than the expert
agent on 4 out of the 5 evaluated domains, with near
equal performance on the remaining domain. As the
expert uses a perfect model, it represents the best per-
formance that can be achieved by the particular planner
with the most accurate learned model possible. This
demonstrates that TransNet is able to produce policies
of a quality level which is not attainable through con-
ventional model-based learning.

Table 2: Comparison of the converged policy of TransNet and
QMDP-Net on Grid 10x10 S over different sizes of training
set.

Trajectories Agent SR TL (95% CI) CR (95% CI)
QMDP-Net 704  21.5 (+1.95) 32.0 (£2.2)

2000 TransNet  98.2 153 (£1.11) 11.2 (£1.3)
QMDP-Net 950  15.1 (+1.05) 13.9 (+1.8)

10000 TransNet  99.8  14.1 (40.93) 10.0 (+1.2)
QMDP-Net  97.2  16.2 (+0.86) 9 (£1.0)

50000 TransNet  99.2  15.4 (40.95) 8 (+0.7)

Table 2 presents a comparison of the performance of
TransNet and QMDP-Net in a stochastic grid environ-
ment when trained on sets of expert trajectories of dif-
ferent sizes.

The results indicate TransNet significantly reduces
data requirements. TransNet achieves a 98% success rate
after training with 2,000 scenarios. In contrast, QMDP-
Net requires 50,000 scenarios to attain a comparable rate

of success in this domain. The reduced data require-
ments enable TransNet to be more practical for applica-
tions where acquiring training data is difficult or costly,
such as when training data must be collected through
interaction with a physical system.

Table 3: Comparison of the converged policy generated by
TransNet and QMDP-Net trained on Grid 10x10 D for (de-
terministic cases) and Grid 10x10 S for (for stochastic cases)
and evaluated on large scale realistic environments derived
from LIDAR datasets.

Domain Agent SR TL CR

QMDP-Net 40.0 100.0 6.6
TransNet 96.0 94.3 1.2

QMDP-Net 4.0 90.0 37.2
TransNet 68.0 129.2 3.7

QMDP-Net  56.0 70.8 225
TransNet 78.0 65.2 4.8

QMDP-Net 24.0 122.3 43.0
TransNet 52.0 107.5 7.9

QMDP-Net 14.0 85.1 28.6
TransNet 84.0 91.2 3.9

QMDP-Net 24.0 119.5 28.6
TransNet 52.0 193.3 4.2

Intel Lab 101x99 D

Intel Lab 101x99 S

Building 079 145x57 D

Building 079 145x57 S

Hospital 193x104 D

Hospital 193x104 S

Table 3 presents the generalization capability of
TransNet, compared to QMDP-Net. It compares the
performance when networks trained on small artificially
generated environments are evaluated on large scale re-
alistic environments: Intel Lab corresponds to the Intel
Research Lab dataset, Building 079 corresponds to the
Freiburg Building 079 dataset, and Hospital corresponds



to the Freiburg University Hospital dataset. To evalu-
ate scenarios, we ran 25 trials per environment. In the
work of [Karkus et al., 2017], QMDP-Net was demon-
strated to produce high rates of success on deterministic
large scale environments when trained on expert trajec-
tories in 30 x 30 random grids. Here, we trained both
TransNet and QMDP-Net on 10 x 10 random grids and
evaluated in both deterministic and stochastic cases of
realistic environments.

The results indicate TransNet substantially improves
generalization capability. Local characteristics of states
in the same class of problems (e.g., robot navigation in
partially observed scenarios) tend to remain the same,
even though the global complexity are totally differ-
ent. Therefore, by learning separate transition functions
based on local characteristics of the states, TransNet can
generate policies that generalize well.

5 Conclusion

TransNet is a deep recurrent neural network for comput-
ing near optimal POMDP policies when the transition,
observation, and reward functions are a priori unknown.
The key novelty of TransNet is a relatively simple neural
network module that can learn non-uniform transition
function efficiently. Experiments on navigation bench-
marks indicate that TransNet consistently out-performs
state-of-the-art QMDP-Net. Moreover, results also in-
dicate that TransNet can generalize better and substan-
tially reduce the amount of training data and time re-
quired to reach certain performance.

This work suggests that a relatively simple neural net-
work module can help embed more sophisticated models
into deep neural networks, which then lead to substan-
tial improvement for planning in stochastic domain. It
is interesting to understand further how more sophisti-
cated planning and learning components could help fur-
ther scaling up of our capability in computing near op-
timal policies for decision making in stochastic domain.
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