
A distributed, any-time robot architecture for robust manipulation

Aaron J. Snoswell∗, Vektor Dewanto, Marcus Hoerger, Joshua Song,

Hanna Kurniawati & Surya P.N. Singh

The Robotics Design Laboratory at The University Of Queensland, Brisbane, Australia

{a.snoswell | vektor.dewanto | m.hoerger | j.song | hannakur | spns} [at] uq.edu.au

Abstract

We present a robot system architecture for a
mobile manipulator to perform grasping and
manipulation tasks robustly. The system is dis-
tributed across multiple computers allowing for
online update rates while maintaining a reason-
able planning horizon. We test this system ar-
chitecture using the MOVO mobile manipula-
tion platform from Kinova Robotics. The com-
pleted system was demonstrated with a robust
manipulation task for over 70 hours at SIMPAR
2018 and ICRA 2018, achieving a success rate
≈ 98%.

1 Introduction

Grasping and placing are key interaction tasks that have
received attention from the robotics community. A chal-
lenge in this domain is how to handle sensor and actua-
tor uncertainty in a principled and robust manner while
maintaining the responsiveness required for real-time,
real-world interaction. Here we present the robot soft-
ware architecture developed as part of our e�orts to solve
complex robot manipulation tasks under uncertainty. A
key enabling factor to solve these tasks is our distributed
architecture, which allows us to run an any-time planner
o�-board the robot, communicating sparse observation
and action messages as required.
We demonstrate the merit of this approach with a real-

world multi-stage task involving localizing and grasping
a cup, scooping some candy from a nearby box, and
placing the cup on a table without spillage. Our sys-
tem achieves robust manipulation by leveraging recent
advances in decision-making under uncertainty and by
using a state-of-the-art POMDP solver as the underly-
ing motion planner. We realise our system using the
MOVO mobile manipulator robot from Kinova Robotics
(see Figure 2). The MOVO robot is a mobile manipu-
lator platform consisting of a holonomic wheeled base,

∗Corresponding author

MOVO1 MOVO2
Planning
Server

HDMI

ROS Topics

Supervisory
Control Node

In-memory
API

ROS
ActionServer

/ Client Planner
Interface Node

Grasp
Detection Node

Object
Detection Node

Motor Control
Nodes

LIDAR Nodes

Depth Sensing
Nodes

Motor State
Publisher Node

Voice Output
Node

POMDP
Solver

Legend

Physical Computer

ROS Process

Non-ROS Process

Run-time
diagnostics

Onboard Robot

Figure 1: The architecture for our distributed, any-time
robot planning system.

a vertical linearly actuated torso, pan-tilt depth sensing
`head' camera, front and rear ground-height linear LI-
DAR sensors, speakers, a microphone as well as two 6-
or 7-DOF Kinova JACO arms. We also present quali-
tative results obtained with the complete system during
two weeks of demonstrations at the SIMPAR and ICRA
robotics conferences in 2018.

The remainder of this paper is structured as follows.
In Section 2 we outline the overall nature of our robot
system architecture. Section 3 covers how we obtained
the sensor measurements required to form observations
for the POMDP planner. The coordination of the re-
spective sub-systems with a supervisory control node is
outlined in Section 4. Section 5 discusses the interface
to the motion planning module. Section 6 discusses our
qualitative assessment of the performance of the system,
while Section 7 covers related work and Section 8 high-
lights areas for future work.

Figure 2: The Kinova Robotics MOVO mobile manipulator
robot. Note that the infra-red motion capture marker balls
were used only during development and calibration, not in
the �nal system.

2 System Architecture

As stated above, for this project our aim was to demon-
strate our POMDP planner using the Kinova MOVO
robotic platform. The �nal architecture we developed to
accomplish this is shown in Figure 1. Here, we discuss
the di�erent components of this architecture.

2.1 Software and hardware stack

The MOVO robot natively supports the widely-used
Robot Operating System (ROS) stack (version 8 `In-
digo') [Quigley et al., 2009], so this was selected as the
basis for our architecture. The software packages used in
our architecture are shown in Table 2, along with version
numbers.

The MOVO robot also comes with two on-board Next
Unit of Computing (NUC) computers (referred to as
MOVO1 and MOVO2), which we leveraged as part of
our distributed architecture. As discussed in Subsec-
tion 2.2, we opted to include an o�-board computer to
host the motion planning module. The speci�cations for

the computers used in our �nal system are outlined in
Table 1.

2.2 Load Balancing

Due to a mis-match in supported ROS versions on-board
MOVO, we opted to host our planning module on a sep-
arate, o�-board computer. We decided not to update
the MOVO software ecosystem due to time constraints
and the fact that the MOVO software was in beta at
that point, and thus undergoing rapid changes already.
In the default con�guration, the MOVO robot is con-

�gured to run motor control and LIDAR processing on
MOVO1, while MOVO2 is dedicated to processing in-
coming point clouds from the RBG+D camera. These
processes consumed approximately 15% and 40% of the
processor capacity of MOVO1 and MOVO2 respectively.
We opted to host the solver on it's own dedicated
computer (the planning server), allowing MOVO1 and
MOVO2 to remain free to run lower-level robot inter-
face processes. With this con�guration, and after adding
nodes required for our system, the CPU usage was stable
at approximately 20% on MOVO1 and 60% on MOVO2,
thus achieving our goal of real-time performance while
ensuring the system was safe to use in a public exhibition
space.

2.3 Communication with the planner

This distributed nature of the architecture required a
communication interface from the planner to the ROS
ecosystem on-board the robot. The ROS topic and ser-
vice features provide for distributed read-only and re-
mote procedure call functionality, however, the long-
running and anytime query nature of our POMDP solver
meant that these communication methods were not ap-
propriate for our system. Instead, we opted to use the ac-
tionlib ROS package, which is designed for long-running
pre-emptible tasks1. We created a ROS ActionServer
node on the planning server and an associated Action-
Client on the robot, connected via the standard ROS
TCP interface over Ethernet. These nodes then commu-
nicated environment observations and requested actions
between the planning server and the robot hardware.
This required interfacing the stand-alone solver with the
ROS ecosystem via a thin wrapper which we refer to as
the `Planner Interface Node' (PIN) (see Section 5).
The observations sent to the planner consisted of a

vector o = (po, θ, gripperOpen, targetGrasped), where;

• po is the 6-DOF pose of the target object to grasp

• θ is a vector of the joint angles for the robot arm

• gripperOpen is a boolean indicating if the gripper
is currently open or not, and

1http://wiki.ros.org/actionlib

http://wiki.ros.org/actionlib

Table 1: Speci�cations for the computers used in our system architecture

Computer MOVO1 MOVO2 Planning Server

Model Intel NUC5i7RYB Intel NUC5i7RYB Dell Precision T3600
Processor(s) Intel Core i7-5557U

@ 3.10GHz (x4)
Intel Core i7-5557U
@ 3.10GHz (x4)

Intel Xeon E5-1620
@ 3.60GHz (x8)

Operating System Ubuntu 14.04.5 64-bit LTS
+ real time kernel

Ubuntu 14.04.5 64-bit LTS
+ real time kernel

Ubuntu 16.04.1 64-bit

Disk Space 128GB 128GB 1TB
Memory 16GB DDR3 1867MHz 16GB DDR3 1867MHz 16GB DDR3 1600MHz

ROS Version 8 (Indigo Igloo) 8 (Indigo Igloo) 10 (Kinetic Kame)

• targetGrasped is a boolean indicating if the tar-
get object is currently being grasped (see Subsec-
tion 3.2)

Note that the pose of the gripper is not explicitly
passed to the solver, but instead is encoded as part of the
joint angle vector θ. Actions received from the planner
consisted of vectors a = (∆θ, gripperAction) where;

• ∆θ is a vector of absolute angle increments for each
joint in the robot arm

• gripperAction is an integer indicating the requested
gripper action; +1 to fully close, 0 for no action, and
-1 to fully open.

The message scripts for ActionServer/Client commu-
nication between the planner and the ROS ecosystem are
shown in Figure 8.
One bene�t of this con�guration is the ability to switch

out the real robot for a simulation environment. With
only minor modi�cations to the Kinova MOVOROS con-
�guration, we were able to run our planner for a software-
only MOVO robot in the Gazebo simulation environment
[Koenig and Howard, 2004]. This separation of concerns
aided development and debugging of the overall system,
reducing the overall development time.
Concretely, we used Gazebo v2.2.5. This choice for

rather outdated version is because the latest version
is not compatible with ROS Indigo. Using an out-
dated version required manually downloading the de-
fault model �les as per instructions we found on-line.2

We simulated the robot's controller using ros_control

package and a simple Gazebo plugin adapter. Note
that Gazebo requires relatively high speci�cations for a
graphic card.3 For our application, we found that a ded-
icated graphic card with 1536 cores and 4 GB of video
memory was su�cient.
A challenge we encountered was that the ROS Action-

Server/Client message transform structures can loose

2http://answers.gazebosim.org/question/6870/
what-namespace-does-gazebo-expects/?answer=6959

3https://answers.ros.org/question/9243/
gazebo-supported-graphics-card/

synchronization if the clocks on the respective computers
are misaligned. We found that installing and con�guring
the clock-synchronisation package chrony for Ubuntu
�xed this issue.4 Speci�cally, we forced MOVO1 and
MOVO2 to treat the planning server as a Network Time
Protocol master server.
Finally, we also implemented a Supervisory Control

Node (SCN) to coordinate observation and action mes-
sages, and control the other parts of the system (see Sec-
tion 4). This process was hosted on MOVO2, along with
the nodes for object and grasp sensing (see Section 3).

2.4 Communication with hardware drivers

Communication from the SCN to the lower-level hard-
ware drivers was done through the Kinova MOVO APIs.
By default, the MOVO is con�gured to use the MoveIt!
motion planner that is part of ROS [Sucan and Chitta,
2011]. We modi�ed the appropriate parts of the Kinova
MOVO API to replace MoveIt! with commands from
our motion planner, via the SCN. The modi�ed logi-
cal call hierarchy from planner to actuators is shown in
Figure 3, along with the update frequencies and commu-
nication methods for each call.

3 Sensing pipeline

3.1 Vision system

The MOVO robot is equipped with front and rear SICK
TiM5XX series 2D LIDAR sensors, which are used for
navigation and mapping. It is also equipped with a
Kinect V2 time-of-�ight RGB+D camera mounted on
a pan and tilt actuator, which is used for localizing ob-
jects for manipulation. ROS provides an interface that
projects each pixel in the depth map into a point in 3D
space, forming a point cloud.
The candy container was localized through a �ducial

marker. The height of the remaining candy was then
measured by averaging the height of the relevant points
in the point cloud.
In order to localize the cup and the table, the Kinect is

panned left and right in a pre-set trajectory. Point Cloud

4https://chrony.tuxfamily.org/

http://answers.gazebosim.org/question/6870/what-namespace-does-gazebo-expects/?answer=6959
http://answers.gazebosim.org/question/6870/what-namespace-does-gazebo-expects/?answer=6959
https://answers.ros.org/question/9243/gazebo-supported-graphics-card/
https://answers.ros.org/question/9243/gazebo-supported-graphics-card/
https://chrony.tuxfamily.org/

Arm
ActionClient

Arm Joint
Trajectory

Action Server

Arm PID
Controller

Kinova Motor
Regulation

Drivers

MoveIt!

Manual Joystick
Tele-operation

Actuators

Supervisory
Control Node

moveit_msgs/MoveGroupGoal
(when requested)

Custom ROS message
(50Hz)

In-memory API call
(100Hz)

In-memory API call
(100Hz)

Custom ROS message
(1.3Hz)

Custom ROS message
(50Hz)

Figure 3: The modi�ed call hierarchy to route our motion
planner's commands to the MOVO arm actuators.

Library (PCL) v1.7 [Rusu and Cousins, 2011] functions
were used for processing the point cloud. This process
is shown in Figure 4.

The cup mesh is loaded as a point cloud and down-
sampled through a voxel grid �lter. Down-sampling re-
duces the computation required in later steps. The point
cloud from the Kinect is �ltered to remove statistical out-
liers and then also down-sampled through a voxel grid
�lter to the same grid size as the cup point cloud. Self-
�ltering is performed in order to remove points corre-
sponding to the robot's arm. The table surface points
were then segmented using the RANSAC algorithm [Fis-
chler et al., 1981]. A clustering algorithm was then run
on the non-table points, and the similarity of each cluster
to the cup was calculated through a nearest neighbour
algorithm.

Sensor error is a major challenge in manipulation, and
the Kinect is no exception. There seems to be con�ict-
ing reports from studies quantifying the Kinect's error.
[Wasenmüller and Stricker, 2016] measured an almost
constant o�set of 1.8 cm regardless of depth but [Breur
et al., 2014] claims that the error is signi�cantly depen-
dent on the depth. Both papers agree that sunlight and
varying sensor temperature can cause error. Sharp ob-
ject curvature or highly re�ective surfaces can also cause
erroneous measurements or `�ying pixels'. For example,
note the `fuzziness' around the cup in Figure 10, which

Load object
mesh from file
as point cloud

Voxel grid filter

Get point cloud
from Kinect

Transform cloud
to base frame

Crop cloud to
workspace

Statistical
outliers filter

Voxel grid filter

Robot self filter

Plane
segmentation

Clustering
Calculate match
score for each

cluster

Figure 4: The �owchart for the system vision pipeline.

contributes to error in estimated object position.
We conducted an experiment to quantify the error in

our object pose estimation. A cylindrical snack can was
placed at varying positions on the table and the pose es-
timate from the Kinect recorded. The ground truth was
measured through an OptiTrack motion capture system.
The results are shown in Figure 5, where the x-axis is
forward from the center of MOVO. The average error
is approximately 3cm, but as can be seen, the error de-
pends on the distance and angle of the object relative to
the Kinect sensor. The pose estimation error can be in-
creasingly unpredictable if the object is too close to the
Kinect. In our case, we did not hard-code any calibrated
o�sets, and instead handle this signi�cant uncertainty
through our POMDP motion planner.

3.2 Grasp detection

The KG-3 end e�ector provided with the Kinova JACO
robot arms is a three-�nger gripper, where each �nger
contains two rotational joints (base and knuckle), but
the all three �ngers are driven by a single motor (see Fig-

Figure 5: A top-down scatter plot comparing Kinect and
OptiTrack pose estimates of an object. The MOVO robot is
shown approximately to scale for reference.

Figure 6: A close-up showing the under-actuated, three-�nger
KG-3 gripper on the Kinova JACO arm.

ure 6). As such, the gripper is inherently under-actuated.
As discussed in Section 4, the Supervisory Control Node
was required to send observations to the planner, includ-
ing whether or not the current target object had been
successfully grasped. This presented a challenge, as the
default grippers on the MOVO robot do not have any
tactile sensing ability, and we did not want to modify
the end e�ectors with external sensors. The end e�ec-
tor interface did provide a reading of the instantaneous
current draw for the gripper motor, which given a motor
set-point, is theoretically proportional to grasp torque,
however we found this signal was too noisy to provide
a reliable indication of grasp status. In the �nal system
we used a very simple solution: hard-code the motor po-
sition for `gripper closed' and `gripper open' poses, then
rely on the compliance in the under-actuated �ngers to
establish a robust grasp. In addition, we selected as our
target grasp object a cup with a small amount of com-
pliance to avoid over-driving the gripper motor.

4 Supervisory control node

The main entry point for the robotic system was a Su-
pervisory Control Node (SCN), which initialized other
sub-systems and coordinated high-level control. In par-
ticular, the SCN hosted the ROS ActionClient that was
used to communicate with the Planner Interface Node
(PIN). After initialization, the SCN would continually
send updated observations to the planner, and in re-
turn, execute requested actions. These processes are il-
lustrated in Figure 9.

5 Planner Interface Node

To ensure a seamless communication between the SCN
detailed in section 4 and the planner, we use a Planner
Interface Node (PIN). The primary purpose of this node
is to serve as a translation unit between the SCN and the
underlying planner, converting data structures into ROS
messages and vice-versa. Since the PIN is running on
the planning server, it also launches the actual planner.
As a communication point between the SCN and the
planner, it provides two ROS action servers: One that is
being used by the SCN to initialize the environment and
robot model maintained by the planner after the initial
scan has been performed. The second action server is
being used by the SCN to provide the planner with the
latest observation and, within the same call, requesting
the next action. Additionally the PIN informs the SCN
about possible planning failures. The PIN is designed to
be as thin and lightweight as possible to make sure that
all system resources are dedicated to the planner.

5.1 Robust Planning

As outlined above, the robot is subject to various er-
rors in control and sensing, such as imperfect joint en-
coders and imprecise knowledge of the pose of the target
grasp object. In order to enable robust operation in the
presence of these uncertainties, we formulate the plan-
ning problem as a Partially Observable Markov Decision
Process (POMDP). A POMDP is a general and system-
atic framework for planning under uncertainty that en-
ables the robot to reason about the best action to per-
form when perfect state information is unavailable. For
our problem we use ABT [Kurniawati and Yadav, 2013],
implemented within the OPPT framework [Hoerger et
al., 2018]. ABT is considered one of the fastest on-line
POMDP solvers today and has empirically shown to be
signi�cantly more robust against aforementioned uncer-
tainties in our experiments, compared to a deterministic
planner, particular for our task where the state and ob-
servation spaces are continuous. Additionally it supports
our intendend any-time capabilities, meaning that new
actions are readily available once the robot has executed
the current action.

6 Experimental Results

We qualitatively evaluated the performance of our ar-
chitecture by running the grasp-scoop-place demo (see
Section 1) at the SIMPAR and ICRA robotics confer-
ences in May 2018. Over two weeks we ran this demon-
stration continuously at the respective conference exhi-
bition halls for approximately nine hours a day. We esti-
mate the system completed a full execution of the demo
upwards of 1000 times, achieving a success rate of ap-
proximately 98%, the most common failure case being
grip slippage. During these demonstrations, we allowed
the solver a planning time horizon of 750ms per action.
Given that the complete policy for the grasp-scoop-place
task required approximately 100 steps from the solver,
the total demonstration took approximately 1-2 minutes
each time. The memory consumption of the POMDP
solver never exceeded 1500MB during the execution of
the runs.
Also of interest is the nature of the policies enabled

by our architecture. Figure 7 shows an exemplar trajec-
tory for the grasp-scoop-place demo. As can be seen in
the �gure, we observed that the solver discovered non-
holonomic pushing behaviours to increase grasp robust-
ness during the grasping phase. This is a result of the
uncertainty encoded in the observation and actuation
models, and not a result of manual reward or policy en-
gineering, demonstrating one of the bene�ts of using a
planer that accounts for model and observation uncer-
tainty.

7 Related Work

Robotic manipulation is a research area with a rich his-
tory. A good overview of early, decision-theoretic ap-
proaches is given by [LaValle, 2006]. More recently,
there is been a trend to integrate task and motion plan-
ning in manipulation domains [LaValle and Hutchinson,
1998]. For example, [Kaelbling and Lozano-Pérez, 2013]

describe an approach based on symbolic operators over
belief spaces.
POMDP models for motion planning have historically

been applied to problems with limited degrees of free-
dom (e.g. navigation). For example, see [Thrun et al.,
2005] for a good overview, or [Kurniawati et al., 2011]

for an extension to longer-horizon and larger state-space
problems. The relatively recent emergence of approx-
imate (sample-based) and e�cient solvers has enabled
application to higher degree-of-freedom problems, such
as those encountered in manipulation tasks, as demon-
strated in our case. However other examples of this ap-
plication are sparse in the literature. [Pajarinen and
Kyrki, 2017] also use a POMDP as the motion planning
module for a vision-based real-world robotic manipula-
tion task with a Kinova robotic arm. The primary di�er-
ence with our work is that they utilize a custom online

POMDP solver, while we use the ABT solver by [Kurni-
awati and Yadav, 2013] implemented within the OPPT
framework [Hoerger et al., 2018]. They also focus on a
multi-object manipulation task, while our focus is on a
single-object task with multiple types of manipulation
(grasping, scooping and placing). [Monsó et al., 2012]

also utilise a POMDP for manipulation planning, how-
ever their problem domain is deformable clothing, while
we focus on manipulation of rigid bodies (a cup) in the
presence of deformable clutter (a container full of small
candy).
In contrast, [Koval et al., 2016], simplify the manipu-

lation problem by constraining the end e�ector to a �xed
transformation relative to the support surface and build
a lattice in con�guration space. Their approach relies on
real-time feedback from contact sensors and they solve
the POMDP using the DESPOT planner [Ye et al., 2017]

by leveraging two key ideas; (a) lazily constructing a dis-
crete lattice in the robot's con�guration space, and (b)
guiding the search with heuristics.

8 Conclusion

We have presented our architecture enabling robust ma-
nipulation for a Kinova MOVO manipulator platform.
This distributed architecture enabled us to robustly ac-
complish a multi-stage manipulation task on a real-world
platform with signi�cant sensor error.
Here we summarise some of the lessons learned during

our development process;

• Reference frame for motion capture: In order
to obtain ground-truth poses of the robot and its en-
vironment during calibration and development, we
used the OptiTrack tracking software. This requires
a single marker attached to the robot chassis, which
is used as reference for the robot frame. Ideally,
the robot URDF should contain a frame at which
to place the reference marker, and the physical lo-
cation of this point should be clearly marked, easy
to reach and visible from many camera angles.

• Wireless emergency button: For a mobile ma-
nipulator, it is not su�cient to have a single on-
board emergency button; this requires a user to
be on standby near the robot in the event of an
emergency. We suggest that with such systems, a
wireless emergency button is crucial to allow shut-
ting down the robot from some reasonable distance.
Note that although wireless, this emergency mech-
anism should maintain a direct access to the inter-
nal power circuits, bypassing any application layers.
This implies, for example, a conventional joystick
control loop can not be used.

• Ergonomic charging point: Power charging is
arguably one of the most routine robotics task per-

Figure 7: Images showing the robot executing the grasp (left), scoop (middle) and place (right) actions. Red lines track
physical features for clarity. In the grasp image, the learned non-prehensile pushing behaviour can be seen at the end of the
trajectory.

formed by human operators. Therefore, we believe
that having an ergonomic charging point is essential.
Its design should also take into account possible ex-
tensions towards autonomous charging.

• Migration to the latest ROS Long-Term-
Support (LTS) version: Our MOVO robot came
with ROS Indigo ecosystem, which is already out-
dated by one newer LTS version. In retrospect, we
believe there may have been signi�cant time-savings
to perform a system migration to a newer LTS ver-
sion before commencing development. We encoun-
tered signi�cant technical problems integrating our
software with the outdated ROS packages. An ob-
solete ROS ecosystem also leads to `domino e�ects'.
For example, it requires an old Ubuntu version that
brings old packages, including the compilers, git,
cmake etc. Additionally, third-party ROS packages
with relevant updated features are usually tied to
speci�c newer versions and not backward compati-
ble.

• Support for wide range of physics engines and
simulators: Simulation is an integral part in the
robot development process. In recent years, there
has been a signi�cant progress in the development
of physically accurate physics engines and simula-
tors. For instance, in addition to robot simulators
like Gazebo, the community also enjoys powerful
physics engines with advanced features such as Mu-
joco and PyBullet5. Unfortunately, those varieties
of simulators do not use standardized robot model
formats. This means switching from one to another
is not a trivial task. We therefore suggest robot
manufacturers should aim to support a wide-range
of physics-engines and simulators, and developers of
physics engines should strive to standardise support
for common robotic model speci�cation �les.

We hope these suggestions can guide future developers

5http://www.mujoco.org and https://github.com/
bulletphysics/bullet3

working with mobile manipulator platforms.
Considering possible areas for future work, there are

a number of interesting avenues. In our demo, we only
used the POMDP solver for planning joint trajectories
for one arm of the MOVO robot. Time constraints pre-
vented us from fully exploiting the degrees of freedom on
the MOVO mobile manipulator platform. It would be
worthwhile to study the types of behaviours that could
be learned if both arms could be used (e.g. for bi-manual
manipulation tasks), as well as the base and torso actua-
tion. Likewise, the �exibility of the POMDP model can
allow agents to exhibit information-gathering behaviours
[Spaan, 2008]. Moving our visual scan step (see Figure 9)
to be part of the inner planning loop observations would
potentially allow for active sensing behaviours.
Another area of much interest is the use of modern

convolutional deep-learning approaches for robotic vision
tasks. Replacing our vision pipeline with a convolutional
deep neural network model would present interesting re-
search challenges in the form of di�erent structure in the
observation errors.
While a small initial step, we hope this result adds

to the growing body of evidence that robust manipu-
lation and planning is feasible, even under real-world
uncertainty and with high-dimensional state and action
spaces.

Acknowledgements

Our thanks to Kinova Robotics for technical assistance
with this project as part of the MOVO beta program.
M. Hoerger is supported by a joint Research Training
scholarship from The University of Queensland and the
Australian Government Commonwealth Scienti�c and
Industrial Research Organisation. V. Dewanto is sup-
ported by a University of Queensland Research Train-
ing Scholarship. J. Song is supported by an Australian
Government Research Training Program Scholarship. A.
Snoswell is supported by an Australian Government Re-
search Training Program Scholarship and a University
of Queensland School of ITEE Scholarship.

http://www.mujoco.org
https://github.com/bulletphysics/bullet3
https://github.com/bulletphysics/bullet3

References

[Quigley et al., 2009] Morgan Quigley, Ken Conley,
Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y. Ng. ROS: an open-
source Robot Operating System. In ICRA workshop
on open source software, vol. 3, no. 3.2, p. 5. 2009.

[Koenig and Howard, 2004] Nathan P. Koenig, and An-
drew Howard. Design and use paradigms for Gazebo,
an open-source multi-robot simulator. In IROS, vol. 4,
pp. 2149-2154. 2004.

[Sucan and Chitta, 2011] Ioan A. Sucan and
Sachin Chitta MoveIt!. [Online] Available at:
http://moveit.ros.org, [Accessed 28 Sep. 2018].

[Rusu and Cousins, 2011] Radu Bogdan Rusu and Steve
Cousins 3D is here: Point Cloud Library (PCL). In
IEEE International Conference on Robotics and Au-
tomation (ICRA), 2011.

[Fischler et al., 1981] Martin A. Fischler, and Robert C.
Bolles Random sample consensus: a paradigm for
model �tting with applications to image analysis and
automated cartography. Communications of the ACM
24, no. 6 (1981): 381-395.

[Wasenmüller and Stricker, 2016] Oliver Wasenmüller
and Didier Stricker. Comparison of kinect v1 and v2
depth images in terms of accuracy and precision. In
Asian Conference on Computer Vision, pp. 34-45.
Springer, Cham, 2016.

[Breur et al., 2014] Timo Breur, Christoph Boden-
steiner, and Michael Arens. Low-cost commodity
depth sensor comparison and accuracy analysis. In
Electro-Optical Remote Sensing, Photonic Technolo-
gies, and Applications VIII; and Military Applications
in Hyperspectral Imaging and High Spatial Resolution
Sensing II, vol. 9250, p. 92500G. International Society
for Optics and Photonics, 2014.

[Kurniawati and Yadav, 2013] Hanna Kurniawati and
Vinay Yadav An online POMDP solver for uncer-
tainty planning in dynamic environment. Proc. Int.
Symp. on Robotics Research 2013.

[Hoerger et al., 2018] Marcus Hoerger, Hanna Kurni-
awati, Alberto Elfes A Software Framework for Plan-
ning under Partial Observability. In: IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems (IROS), 2018.

[LaValle, 2006] Steven M. Lavalle Planning Algorithms.
Cambridge university press, 2006.

[LaValle and Hutchinson, 1998] Steven M. Lavalle and
Seth A. Hutchinson An objective-based framework for
motion planning under sensing and control uncertain-
ties. The International Journal of Robotics Research
17, no. 1 (1998): 19-42.

[Kaelbling and Lozano-Pérez, 2013] Leslie P. Kaelbling
and Tomás Lozano-Pérez Integrated task and motion
planning in belief space. The International Journal of
Robotics Research 32, no. 9-10 (2013): 1194-1227.

[Koval et al., 2016] Michael Koval, David Hsu, Nancy
Pollard and Siddhartha Srinivasa Con�guration Lat-
tices for Planar Contact Manipulation Under Uncer-
tainty. In Workshop on the Algorithmic Foundations
of Robotics, 2016.

[Ye et al., 2017] Nan Ye, Adhiraj Somani, David Hsu,
and Wee Sun Lee DESPOT: Online POMDP planning
with regularization. Journal of Arti�cial Intelligence
Research 58 (2017): 231-266.

[Thrun et al., 2005] Sebastian Thrun, Wolfram Bur-
gard, and Dieter Fox Probabilistic robotics. MIT press,
2005.

[Kurniawati et al., 2011] Hanna Kurniawati, Yanzhu
Du, David Hsu, andWee Sun Lee Motion planning un-
der uncertainty for robotic tasks with long time hori-
zons. The International Journal of Robotics Research
30, no. 3 (2011): 308-323.

[Pajarinen and Kyrki, 2017] Joni Pajarinen and Ville
Kyrki Robotic manipulation of multiple objects as a
POMDP. Arti�cial Intelligence 247 (2017): 213-228.

[Monsó et al., 2012] Pol Monsó, Guillem Alenyá, and
Carme Torras POMDP approach to robotized clothes
separation. In Intelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference on, pp.
1324-1329. IEEE, 2012.

[Spaan, 2008] Matthijs TJ Spaan Cooperative active
perception using POMDPs. In AAAI 2008 workshop
on advancements in POMDP solvers. 2008.

Table 2: The primary ROS packages used in our architecture

Package (Indigo branch) Description

ros_control Controller interfaces, controller managers, transmissions and hardware interfaces
controller_manager A hard-realtime-compatible loop to control robot mechanisms

gazebo_ros Message and service publishers for interfacing with Gazebo

pcl_ros Bridge for 3D applications involving n-D Point Clouds and 3D geometry processing
simple_grasping Basic capabilities and boilerplate codes for grasping

head_action An action interface for pointing the head of the con�gured robot
moveit_kinematics Inverse kinematics solvers in MoveIt!

tf Tracker for multiple coordinate frames over time
actionlib A standardized interface for interfacing with pre-emptible tasks

joint_state_publisher For setting and publishing joint state values for a given URDF
robot_state_publisher For publishing the state of a robot to tf

rviz 3D visualization tool
joy Driver for a generic Linux joystick

geometry_msgs Messages for common geometric primitives such as points, vectors, and poses
trajectory_msgs Messages for de�ning robot trajectories

OPPTInitBelief.action OPPTPlan.action

OPPTObservation.msgOPPTState.msg

OPPTJointPositionAction.msg

Figure 8: The message scripts for action server/client communication between the planner and the ROS ecosystem.

Move arm to
clear location

Scan and
localize

container

Scan and
segment table

Localize cup

Visual scan

Set up planning
problem

Execute Action Get new
observation

Planning loop

No

Task
complete?

Get initial
observation

Self test &
homing

Power on

Visual scan

Go to pre-grasp
pose

Planning
loop

Done

Yes

Done

Figure 9: Process �ow charts for power-on (left), initial visual scan (middle), and the planning loop (right).

Figure 10: A screen shot showing the noise in the point clouds returned from the Kinect RGB+D sensor. By accounting for
this sensor uncertainty in the POMDP model, our system was able to robustly grasp, even varying lighting conditions.

	Introduction
	System Architecture
	Software and hardware stack
	Load Balancing
	Communication with the planner
	Communication with hardware drivers

	Sensing pipeline
	Vision system
	Grasp detection

	Supervisory control node
	Planner Interface Node
	Robust Planning

	Experimental Results
	Related Work
	Conclusion

