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Abstract

In this paper, we bring modelling techniques from
robotics to enable biologists perform an in silico
study of mid-air collision avoidance strategies of fly-
ing animals. This in silico system is distinct from
flying animal dynamics and trajectory simulation, as
the focus is on the strategy behind the observed mo-
tions, rather than the specific motions in space. Our
in silico system consists of a model and a simula-
tor. To handle limited data and various variations
in the flight dynamics and sensing parameters of the
animals, we employ a Partially Observable Markov
Decision Process (POMDP) framework —a general
and principled approach for making decisions under
uncertainty. Here, the solution to the POMDP prob-
lem is an optimal motion strategy to avoid mid-air
collision with another animal. The system simulates
the motion strategies in various head-on encounter
scenarios. Preliminary results on comparing the sim-
ulated behaviours with 100 encounters from real hon-
eybees are promising; the collision rate differs by less
than 1%, while the difference in the minimum dis-
tance between two bees in 100 head-on encounters is
on average around 12mm, which is roughly equiva-
lent to the average wing span of the honeybees used
to generate the data.

1 Introduction

Many robotic systems, from RoboBees [12] to Big-
Dog [16] to RoboTuna [2I], have benefited from a
better understanding of animal motion. These theo-
ries and concepts of animal locomotion are developed
based on observations over a large amount of data on
the animals’ motion. However, gathering such data is
not always easy, especially when the manoeuvre un-
der study seldom occurs, such as the mid-air collision
avoidance of insects or the chase of a cheetah.

In this paper, we present our preliminary work in

bringing modelling techniques from robotics to en-
able biologists perform an in silico study of under-
lying motion strategies. This is distinct from animal
dynamics and trajectory simulation as the focus is
on the decision making strategy behind the observed
motions, rather than the specific motions in space.
In this work, we model the animal under study as a
decision making agent, and generate the best motion
strategy assuming the animal is a rational agent that
tries to maximize a certain objective function, such
as avoiding collision with least effort or preying its
lunch as fast as possible. We then use the motion
strategy to generate simulated motions for the ani-
mal. Biologists can observe these simulated motions
as if they are the motions of the animal being stud-
ied. This method of observation enables biologists to
study various examples of motions that seldom oc-
cur. The model, the generated motion strategy, and
the simulator make up the in silico system for study-
ing motion strategies of certain animal behaviour.

A principled approach for decision making in the
presence of limited and uncertain data and varying
parameters, is the Partially Observable Markov Deci-
sion Process (POMDP) framework. This framework
is well-suited for our purpose. Aside from the limited
data, no two animals are exactly alike even though
they are of the same species. This uniqueness causes
variations in various parameters critical to generating
rational motion strategies. For instance, some honey-
bees have better vision than others, enabling them to
perceive possible collisions more accurately and hence
avoid collisions more often, different honeybees have
different wing beat frequencies causing varying lev-
els of manoeuvrability, etc. These variations, while
complex, are not random; indeed, animal morphol-
ogy provides additional information on these uncer-
tainties and their mean effects. As has been shown
in various robotics domains [0} [7], POMDP provides
a robust way to incorporate and reason about these
uncertainties.
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This paper adopts the POMDP framework to
model the collision avoidance strategies of flying an-
imals such as birds, bats, and bees, who seem to
avoid mid-air collisions effortlessly even in incredibly
dense situations and apparently without the complex
structure and communications of civil systems such
as the Traffic Alert and Collision Avoidance System
(TCAS). While the dynamics of a bird and a plane
are different, a comparison of animal strategies with
TCAS might better inform the ongoing development
of next generation TCAS systems. This is an active
research area especially due to the recent progress in
Unmanned Aerial Vehicles (UAVSs) that spurred the
need for a more reliable and robust TCAS that can
handle more traffic [I§].

Interestingly, POMDP framework is currently cen-
tral to such efforts [§]. This coincidence is not acci-
dental. Due to errors in sensing and control, an agent
(e.g., pilot) may not know their exact state and the
actions of the neighbouring entities. POMDP is de-
signed to handle such types of uncertainty. Instead of
finding the best action with respect to a single state,
a POMDP solver finds the best action with respect to
the set of states that are consistent with the available
information so far. This set of states is represented
as a probability distribution, called a belief b, and
the set of all possible beliefs is called the belief space
B. A POMDP solver calculates an optimal policy
7™ : B — A that maps a belief in B to an action
in the set A of all possible actions the agent can per-
form, so as to maximize a given objective function.
In TCAS, POMDP models the flying dynamics and
sensing ability of an aircraft along with the errors
and uncertainty of the system, to generate a robust
collision-avoidance strategy for the aircraft.

Although solving a POMDP is computationally in-
tractable in the worst case [I4], recent developments
of point-based POMDP approaches [3, [11l 15, [19]
have drastically increased the speed of POMDP plan-
ning. Using sampling to trade optimality with ap-
proximate optimality for speed, point-based POMDP
approach have moved POMDP framework from solv-
ing a 12 states problem in days to solving non-trivial
problems with millions of states and even problems
with 10 dimensional continuous state space within
seconds to minutes [2 [6 [7, @, [10]. This progress
in POMDP solving is key to its recent adoption in
TCAS [20], and to the feasibility of our proposed in
silico system.

Leveraging this result, we adopt the POMDP
model of TCAS and adjust the dynamics and sensing
model to approximate those of flying animals. The so-
lution to this POMDP problem is an optimal policy /
motion strategy for the flying animal to avoid mid-air

collision. We also develop a simulator that simulates
motion strategies of the animal that uses the policy
to avoid mid-air collision in various encounter scenar-
ios. The encounter scenarios are generated based on
data and information about flight plans of the flying
animal under study. Biologists can then use the simu-
lator to generate and observe various notions on how
the flying animal avoid mid-air collision.

We have developed and tested our in silico system
for characterising mid-air collision avoidance for hon-
eybees. We have also compared the simulated bee
motion generated by our system and the motion of
100 actual honeybees in avoiding mid-air collisions.
Preliminary results are promising, with less than 1%
difference in the collision rate, and an average dif-
ference of approximately 12mm in the minimum dis-
tance between two bees in 100 head-on encounters,
which corresponds roughly to the average wingspan
of the bees in our data.

Of course an in silico study of animal motion is no
substitute for studying the motion of real animals.
However, it may enable biologists to develop better
initial hypotheses, and hence perform more focused
and efficient studies on real animals, which can be
much more costly and difficult compared to an in sil-
ico study.

2 Related Work

2.1 DMotion Strategies for Mid-Air
Collision Avoidance

Motion is a defining characteristic of an animal. Its
analysis, however, is typically focused on the dynam-
ics and loadings that drive the motion [I]. The deci-
sion making strategies behind these motions are typ-
ically made by using the observed trajectories [I3]
to determine gait model parameters that are then
compared to hypothesized models and strategies that
minimise energy or forces, for example.

In the case of mid-air flight steering and collision
avoidance, analysis has ranged from Ros et al. [I7]
who studied manoeuvrability in pigeons to Groening
et al. [5] who studied pairwise collision avoidance be-
haviour in bees flying through narrow tunnels. They
discovered that bees actively avoid mid-air collisions
when they are flying. Discovering such behaviour re-
quires a large amount of data, which is often difficult
to get. This work propose to alleviate such difficulty
by developing an in silico system that generates tra-
jectories similar to real animal trajectories, based on
limited data and known information about the animal
under study.
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Mid-air collision avoidance is also of great inter-
est to air traffic. Recent advancements in Unmanned
Aerial Vehicles (UAVs) means heavier air traffic is ex-
pected in the near future, which spurred the need for
more reliable and robust TCAS. One of the key issues
in increasing TCAS’ reliability and robustness is in
taking into account the various uncertainty affecting
pilots or UAVs in avoiding mid-air collision. There-
fore, POMDP has been proposed [4] and successfully
applied to improve the reliability and robustness of
today’s TCAS system [2,[20]. The POMDP model for
TCAS provided a good starting point for our work.

2.2 Background on POMDP

Formally, a POMDP model is defined by a tuple
(S8, A,0,T,Z,R,v,by), where S is a set of states, A
is a set of actions, and O is a set of observations.
At each time step, the POMDP agent is at a state
s € S, performs an action act € A, and perceives
an observation o € @. Due to errors in its controller
and the partially observed world dynamics, the next
state the agent might be in after performing an action
is uncertain. This uncertainty is modeled as a con-
ditional probability function T' = f(s'|s,act), with
f(s'| s,act) representing the probability the agent
moves from state s to s’ after performing action
act. Uncertainty in sensing is represented as a con-
ditional probability function Z = g(o|s’,act), where
g(o| s, act) represents the probability the agent per-
ceives observation o € O after performing action act
and ends at state s'.

Furthermore at each step, the agent receives a re-
ward R(s,act), if it takes action act from state s.
The agents goal is to choose a suitable sequence of
actions that will maximize its expected total reward,
while the agents initial belief is denoted as byg. When
the sequence of actions may have infinite length, we
specify a discount factor v € (0,1), so that the total
reward is finite and the problem is well defined.

The solution of a POMDP problem is an optimal
policy that maximizes the agent’s expected total re-
ward. A policy m: B — A assigns an action act
to each belief b € B, and induces a value function
V (b, ) which specifies the expected total reward of
executing policy 7 from belief b. The value function
is computed as

V(b,m) = E[Z ' R(st, acty)|b, 7] (1)
t=0

To execute a policy m, a POMDP agent executes
action selection and belief update repeatedly. Sup-
pose the agent’s current belief is b. Then, it selects
the action referred to by act = w(b), performs action

act and receives an observation o according to the ob-
servation function Z. Afterwards, the agent updates
b to a new belief b’ given by

b(s'") = 7(b,act, o)

= nZ(s’,act,o)/ T(s,act,s)ds (2)
ses

where 7 is a normalization constant.

3 The Model

In this work, our goal is to create a simulated flying
animal that mimics the behaviour of the real animal
in avoiding mid-air collisions with another flying an-
imal. We refer to our simulated animal as the outgo-
ing animal, while the other animal as the incoming
animal. To take into account our lack of informa-
tion about the behaviour and about the motion and
sensing capabilities of the outgoing and incoming an-
imals, we model the outgoing animal as a POMDP
agent that needs to avoid collision with the incoming
animal whose flight plan is not perfectly known.

In particular, we adopt the POMDP model of
TCAS [2]. This model is based on a very general
and simplified flight dynamics and sensing model of
airplanes, such that when we simplify the flying dy-
namics and sensing capabilities of the animals under
study to a similar level of simplification used in [2],
the set of parameters used to model the airplane dy-
namics and sensing in [2] are similar to those used
for flying animals. Of course, the values of the pa-
rameters would be different, and need to be adjusted.
We describe the model in this section, and discuss the
required adjustments for honeybees in Section [5}

3.1 Flying Dynamics

The state space S of our POMDP model is a continu-
ous space that represents the joint flight state spaces
of the two animals. A flight state of each animal is
specified as (z,y, 2,0, u,v), where (z,y,z) is the 3D
position of the animal, 6 is the animal’s heading angle
with respect to the positive direction of X axis, u is
the animal’s horizontal speed, and v is the animal’s
vertical speed (Figure [l| shows an illustration).

The action space A represents the control parame-
ters of only the outgoing animal. It is a joint product
of vertical acceleration a and turn rate w. Considering
the heavy computation cost of solving the POMDP
model, we restrict a to be in {—ay,, 0, a;, } and w to be
in {—wm, 0, w,, }, where a,, and w,, are the maximum
vertical acceleration and the maximum turn rate, re-
spectively. Although the control inputs are continu-
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Figure 1: The flight state of one flying animal

ous, restricting their values to extreme cases is reason-
able because when under the danger of near mid-air
collisions, it is reasonable to assume that an animal
will maximize its maneuvering in order to escape to
a safe position. Figure[2]shows the 9 discrete actions.
As the incoming animal’s control inputs are unknown
to the POMDP agent, we can either model them as
uniformly randomized values, or as the controls of
flying to some prescribed destinations, or based on
information on the flight path of the animal under
study.

(am, —wm) (am,0) (am, wm)

(—am, wm)

(—=am, —wm) (—=am,0)

Figure 2: The action space contains 9 discrete actions.

We use a simplified model of flight dynamics in
which each animal is treated as a point mass. Given
a control (a,w), the next flight state of an animal
after a small time duration At is given by

Tep1 = x¢ +uwAtcosd, 01 = O + wAL,
Yer1 = Yt +uAtsind, upp1 = ug,
Zt+1 - Zt + UtAt, Ut+1 = Ut “+ aAt

(3)
Figure [3] demonstrates this transition process. In this
model, we assume that during the encounter process,
the horizontal speed is a constant.

3.2 Sensor Model

Although the outgoing animal has no prior informa-
tion the incoming animal’s flight path, it can nois-
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Figure 3: State transition from timestamp ¢ to the
next timestamp ¢+ 1, after a small time duration At.

ily sense the location of the incoming animal. Given
this noisy sensor input, the outgoing animal (i.e., the
agent) manoeuvres to prevent near mid-air collisions
by keeping a safe separation distance from the incom-
ing animal.

We assume the animal has a visibility sensor with
limited field of view and limited range. The field of
view is limited in the elevation direction (both up and
down) with a maximum elevation angle of 6., and
is limited in the horizontal direction (both left and
right) with a maximum azimuth of 6,. The range
limit is denoted as Dg.

The observation space O is a discretization of the
sensor’s field of view. The discretization is done on
the elevation and azimuth angles such that it results
in 16 equally spaced bins along its elevation and az-
imuth angles. Figure [4 illustrates this discretization.
The observation space O is then these bins plus the
observation NO-DETECTION, resulting in 17 observa-
tions in total.

Figure 4: The sensor model. The black dot is the
position of the agent; the solid arrow is the agent’s
flying direction. The red dot is the position of the
incoming animal. Due to bearing error and elevation
error, our agent may perceive the incoming animal at
any position within the pink area.

As long as the incoming animal comes into the
agent’s sensor range (denoted as Dg) and into the
visible space, it appears in a certain observation cell.
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For example, in Figure [4] the red dot represents the
incoming bee, and it lies in 12. However, due to bear-
ing error and elevation error, there will also be small
probabilities that that agent observes the incoming
animal to lie in cells 8, 7 and 11, respectively, and
this brings uncertainties to the observation results.
The bearing error is described by a normal distribu-
tion with zero mean and o, degree standard devia-
tion; similarly, the elevation error is described by a
normal distribution with zero mean and a standard
deviation oe.

Other factors that contribute to observation un-
certainties are false negative and false positive errors.
False positive error is the probability of perceiving the
incoming animal when it is out of range; false negative
error is the probability of not perceiving the incoming
animal when it is in range. Our sensor model can be
described by the parameters in Table

Table 1: Sensor Parameters

Parameter
Range limit Dg
Azimuth limit 0,
Elevation limit 0.
Bearing error standard deviation op
Elevation error standard deviation Oe
False positive probability Dfp
False negative probability Dfn

3.3 Reward Model

We assume that the outgoing flying animal is a ra-
tional agent that minimizes its risk of mid-air col-
lision with the incoming flying animal, while avoid-
ing collision with static objects in the environment.
Furthermore, we assume the flying animal tries to
use as few manoeuvres as possible to avoid colli-
sion. To model such behaviour in our POMDP
agent, we use the following additive reward function
R(s,act) = Ro(s)+Rw(s)+ R (s, act), where R (s)
is the penalty imposed if at state s € S, the outgoing
and incoming animals collide, Ry (s) is the penalty
imposed if at state s € S, the outgoing animal collides
with one or more static objects in the environment,
and Rys(s, act) is the cost for the outgoing animal to
perform action act € A from state s € S.

4 The Simulator

Given the POMDP problem as modelled in Section 3]
the motion strategy for the outgoing animal is gener-
ated by solving the POMDP problem. Any POMDP
solver can be used. In this work, we use Monte Carlo
Value Iteration (MCVI) [3], which has been shown to

perform well on POMDP-based TCAS [2], the model
we have adopted for modelling motion strategies of
flying animals in avoiding mid-air collision. Our sim-
ulator simulates the behaviour of the flying animal
that uses this motion strategy to avoid mid-air col-
lision in various head-on encounter scenarios. The
head-on encounter scenarios can be generated based
on data or information about flight plans of the flying
animal under study.

Biologists can then use the simulator to generate
and observe how the agent avoids mid-air collision
in various environments and encounter scenarios, to
obtain an intuition on how the flying animals might
avoid mid-air collisions.

One may argue that our simulator assumes that
the flying animal acts rationally, in the sense that it
tries to maximize a certain objective function, while
the real animal may not act rationally. Indeed, this
is true. However, our preliminary tests on honeybees
data indicate that the underlying motion strategy of
honeybees in avoiding mid-air collision may not be
far from that of a rational agent (Section .

One may also argue that the objective function we
set may not be the same as the objective function of
the flying animal. Again, this is correct. However,
if we acquire additional information that leads us to
believe that the reward function needs to be modified,
we can easily do so by revising the reward function
in the model, regenerating the motion strategy, and
revising the simulator to implement the new motion
strategy.

5 Case Study on Honeybees

This case study is based on 100 honeybee encoun-
ters in a 3-dimensional tunnel space. The size of the
tunnel space is 930mm x 120mm x 100mm. The pos-
sible coordinate values for x,y, z are —30 < x < 900,
—60 < y <60, and —50 < z < 50. Each encounter
consists of the trajectories of two bees, in the for-
mat of (21,41, 21, T2, Y2, 22) at each timestamp, where
(z1,y1,21) is the position of the outgoing bee and
(z2,Y2, 72) is the position of the incoming bee. The
data is sampled at 25 frames per second. Figure [f]
shows one example of an encounter scenario. In it,
the path formed by circles is the outgoing bee’s flying
path, while the path formed by crosses is the incom-
ing bee’s flying path.

5.1 Setting the Parameters

In our in silico system, the outgoing bee is modelled
as a POMDP agent as described in Section [3]
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Figure 5: The 3D tunnel space in which the path
formed by circles represents the outgoing bee’s flying
trajectory and the path formed by crosses represents
the incoming bee’s flying trajectory.

In the POMDP model, we assume the outgoing bee
and the incoming bee share the same flying dynam-
ics, i.e., they have the same horizontal velocity wu,
the same maximum/minimum vertical acceleration
+a,, and the same maximum/minimum turn rate
fw,,. This is a reasonable assumption considering
that both bees are of the same species, i.e., honey-
bees, and both behave in the same environment, i.e.,
the tunnel space. To get the exact values for these pa-
rameters, we perform statistical analysis on the data
set. From this analysis, we can set u = 300mm/s,
Ay = 562.5mm/s%, and w,, = 375deg/s.

Now, we set the sensing parameters (Table .
Since bees can see quite far and the length of the
tunnel is less than one meter, we set the range limit
to Dg to be infinite, to model the fact that the range
limit of the bee’s vision will not hinder its ability to
see the other bee. The viewing angle of the bees re-
main limited. We set the azimuth limit 6, to be 60
degrees and the elevation limit 6, to be 60 degrees.
The bearing error standard deviation o and the ele-
vation error standard elevation o, are both set to be
1 degree. We assume that the false positive proba-
bility pf, and the false negative probability ps, are
both 0.01.

We use the reward model as described in Sec-
tion to model the risk of near mid-air collisions
and the risk of colliding with the tunnel boundaries.

We consider a state S =
(1,91, 21,01,u1,01,%2,Y2, 22,02,u2,02) € S to
be a collision state whenever the centre-to-centre
distance between two parallel body axes is smaller
than the wing span of the bee. By analysing the
data and based on the biologist’s observations on
when collision occurs, we set this centre-to-centre
distance (or wing span) to be 12mm. And define a
state to be in collision when the two bees are within
a cross-section distance (in Y Z-plane) of 12mm
and an axial distance (in X-direction) of 5mm, i.e.,

V1 —y2)2+ (21 — 22)2 < 12 and |jz1 — 22 < 5.
We assign collision penalty to be -10,000 as suggested
in [2, i.e., Re(s) = —10,000 whenever s is a colli-
sion state. In addition, to discourage unnecessary
manoeuvres, we also assign a small penalty of -0.1
as suggested in [2], i.e., Rps(s,act) = —0.1 when act
has a non-zero vertical speed or non-zero turn rate.
Bees have a tendency to fly in the centre of the
tunnel. To mimic this flying tendency, we impose
a penalty Ry (s) when the bee is too close to the
tunnel walls. Specifically, in the Y-axis, when our
agent bee flies in the centre area of the tunnel (—20 <
Y < 20), no penalty applies; beyond that, a penalty
applies linearly proportional to the distance to the
wall; when our agent hits walls, a maximum penalty
—10,000 is imposed. Similarly, the gradient-based
penalty mechanism is also applied in the z-axis.

5.2 Experimental Setup

The goal of this experiment is to measure the resem-
blance of the trajectories produced by the original
outgoing bee and trajectories produced by POMDP
for the outgoing bee. For this comparison, we use
two measurements, derived from the necessary con-
ditions for the two trajectories to be the equivalent.
The first measurement is Collision rate, which is the
percentage of colliding encounters (among the 100 en-
counters). The second measurement is Minimum En-
counter Distance (MED), which is the smallest Eu-
clidean distance between the outgoing bee and the
incoming bee during one whole encounter process.
If the trajectories produced by POMDP are similar
to the trajectories of the original outgoing bee, then
both collision rate and MED should be similar too.

To generate the trajectories, we first need to solve
the POMDP problem. For this purpose, we imple-
ment our POMDP problem in C++ and solve it using
MCVI [3]. Since MCVI is a randomized algorithm, we
generate 30 different policies to get reliable measure-
ments. To reliably capture the effect of stochastic
uncertainty on the collision avoidance strategy, for
each policy, we run 100 simulations. Each simulation
consists of 100 different encounter processes, where
in each encounter, the simulated incoming bee follows
one of the trajectories observed from a real bee. Each
simulation run produces a collision rate. The average
collision rate of the trajectories generated by the in
silico system is then the average collision rate over
the 30 x 100 simulation runs. The average MED for
a particular encounter situation is then the average
MED over 30 x 100 simulation runs too.

All experiments are carried out on a Linux platform
with a 3.6GHz Intel Xeon E5-1620 and 16GB RAM.
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5.3 Experimental Results

Table 2: Collision Rates
Policy Collision rate  Margin of error

(95% Cont.)
Bee 3% —
POMDP 3.84% 4+0.13%

Applying the collision definition of our POMDP
agent to the 100 bee data, we found the collision rate
of this set of data is 3%. Table [2| shows the collision
rates of the original data and the average collision rate
of the POMDP-based in silico system. The two colli-
sion rates are less than 1% difference, which indicates
that the trajectories produced by the POMDP-based
in silico system are similar to trajectories produced
by the actual bees in terms of collision rate.
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Figure 6: Minimum Encounter Distance (MED) for
the bee data and the simulated encounter in our
POMDP-based in silico system.
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Figure 7: The sorted absolute difference between the
MED measure of real bee encounters and the average
MED of the simulated encounters generated by the
in silico system

Figure [6] shows the Minimum Encounter Distance
(MED) for the real bee data and the simulated
encounter in our POMDP-based in silico system.

Figure [7] shows a histogram depicting the increas-
ing sorted absolute differences between the MED
measurement of the real bee data and the average
MED measurement of the simulated encounters in
our POMDP-based in silico system. This histogram
shows that in 98% of the encounters, the absolute
difference between the MED of the real bee data and
that of the simulated encounters is less than 35mm,
while in 60% of the encounters, the absolute difference
between the MEDs is less than 12mm. In fact, the
average absolute difference between the MED mea-
sure of the real bee data and the average MED mea-
sure of the POMDP-based in silico system is 12.60,
with 95% confidence interval of 1.85.This 12mm av-
erage absolute difference is roughly equivalent to the
estimated average wing span of the honeybees in our
data, which implies that in terms of MFED measure,
our POMDP-based in silico system produces similar
results to the original bee data.

6 Conclusions

In this paper, we propose a POMDP-based in sil-
ico system to help biologists study mid-air collision
avoidance strategies of flying animals. Our system is
distinct from flying animal dynamics and trajectory
simulation, as the focus is on the strategy behind the
observed motions, rather than the specific motions
in space. Our in silico system consists of a model
and a simulator. We model the animals as decision
making agents under the POMDP framework. The
solution to this POMDP problem is an optimal mo-
tion strategy for the agent to avoid mid-air collision
with another flying animal. Our simulator simulates
the behaviour of a flying animal that uses this motion
strategy in various head-on encounter scenarios. The
head-on encounter scenarios are generated based on
data and information about flight plans of the flying
animal under study.

We tested our system on 100 honeybee encounters.
We measure how close our in stlico system to the
actual bee using two measurements —collision rate
and minimum encounter distance— that are derived
from the necessary conditions for the two systems to
be equivalent. Preliminary results indicate that our
POMDP-based in silico system is a promising tool to
study mid-air collision avoidance strategies of flying
animals, n silico. Such a tool may help biologists
better understand mid air collision-avoidance strate-
gies of flying animals faster and with much less cost,
which in turn may benefit the robotics community in
developing better mid air collision-avoidance system.

Many avenues are possible for future work. First is
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the measurement to determine if the in silico system
generates similar trajectories as the real data. In this
work, we have used measurements derived from the
necessary conditions. A better measurement should
be derived from the sufficient and necessary condi-
tion. Second is to test the system on more data and

various different scenarios.

Third is to expand the

system to handle more complex encounter scenarios.
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